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Abstract 
Recent advancements in information and communication technologies are paving the 

way for new paradigms in embedded computing systems. This, allied with an increasing 
eagerness for monitoring and controlling everything, everywhere, is pushing forward the 
design of new Wireless Sensor Network (WSN) infrastructures that will tightly interact 
with the physical environment, in a ubiquitous and pervasive fashion. 

Such cyber-physical systems require a rethinking of the usual computing and 
networking concepts, and given that the computing entities closely interact with their 
environment, timeliness is of increasing importance.  

This Thesis addresses the use of standard protocols, particularly IEEE 802.15.4 and 
ZigBee, combined with commercial technologies as a baseline to enable WSN 
infrastructures capable of supporting the Quality of Service (QoS) requirements 
(specially timeliness and system lifetime) that future large-scale networked embedded 
systems will impose. 

With this purpose, in this Thesis we start by evaluating the network performance of 
the IEEE 802.15.4 Slotted CSMA/CA (Carrier Sense Multiple Access with Collision 
Avoidance) mechanism for different parameter settings, both through simulation and 
through an experimental testbed.  

In order to improve the performance of these networks (e.g. throughput, energy-
efficiency, message delay) against the hidden-terminal problem, a mechanism to mitigate 
it was implemented and experimentally validated. The effectiveness of this mechanism 
was also demonstrated in a real application scenario, featuring a target tracking 
application.  

A methodology for modelling cluster-tree WSNs and computing the worst-case end-
to-end delays, buffering and bandwidth requirements was tested and validated 
experimentally. This work is of paramount importance to understand the behaviour of 
WSNs under worst-case conditions and also to make the appropriate network settings. 

Our experimental work enabled us to identify a number of technological constrains, 
namely related to hardware/software and to the Open-ZB implementation in TinyOS. In 
this line, a new implementation effort was triggered to port the Open-ZB IEEE 
802.15.4/ZigBee protocol stack to the ERIKA real-time operating system. This 
implementation was validated experimentally and its behaviour compared with the 
TinyOS–based implementation.  
 
Keywords: 
Wireless Sensor Networks; Cluster-Tree WSN; Real-Time Communications; Quality of 
Service; IEEE 802.15.4; ZigBee; TinyOS; ERIKA. 
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Resumo 
Os últimos avanços nas tecnologias de informação e comunicação (ICTs) estão a abrir 
caminho para novos paradigmas de sistemas computacionais embebidos. Este facto, 
aliado à tendência crescente em monitorizar e controlar tudo, em qualquer lugar, está a 
alimentar o desenvolvimento de novas infra-estruturas de Redes de Sensores Sem Fios 
(WSNs), que irão interagir intimamente com o mundo físico de uma forma ubíqua. 

Este género de sistemas ciber-físicos de grande escala, requer uma reflexão sobre os 
conceitos de redes e de computação tradicionais, e tendo em conta a proximidade que 
estas entidades partilham com ambiente envolvente, o seu comportamento temporal é de 
acrescida importância. 

Esta Tese endereça a utilização de protocolos normalizados, em particular do IEEE 
802.15.4 e ZigBee em conjunto com tecnologias comerciais, para desenvolver infra-
estruturas WSN capazes de responder aos requisitos de Qualidade de Serviço (QoS) 
(especialmente em termos de comportamento temporal e tempo de vida do sistema), que 
os futuros sistemas embebidos de grande escala deverão exigir. 

Com este propósito, nesta Tese começamos por analisar a performance do 
mecanismo de Slotted CSMA/CA (Carrier Sense Multiple Access with Collision 
Avoidance) do IEEE 802.15.4 para diferentes parâmetros, através de simulação e 
experimentalmente. 

De modo a melhorar a performance destas redes (ex. throughput, eficiência 
energética, atrasos) em cenários que contenham nós escondidos (hidden-nodes), foi 
implementado e validado experimentalmente um mecanismo para eliminar este 
problema. A eficácia deste mecanismo foi também demonstrada num cenário 
aplicacional real. 

Foi testada e validada uma metodologia para modelizar uma WSN em cluster-tree e 
calcular os piores atrasos das mensagens, necessidades de buffering e de largura de 
banda. Este trabalho foi de grande importância para compreender o comportamento deste 
tipo de redes para condições de utilização limite e para as configurar a priori. 

O nosso trabalho experimental permitiu identificar uma série de limitações 
tecnológicas, nomeadamente relacionadas com hardware/software e outras relacionadas 
com a implementação do Open-ZB em TinyOS. Isto desencadeou a migração da pilha 
protocolar IEEE 802.15.4/ZigBee Open-ZB para o ERIKA, um sistema operativo de 
tempo-real. Esta implementação foi validada experimentalmente e o seu comportamento 
comparado com o da implementação baseada em TinyOS. 

Palavras-Chave: 

Redes de Sensores Sem Fios; Cluster-Tree WSN; Comunicações em tempo-real; 
Qualidade de Serviço; IEEE 802.15.4; ZigBee; TinyOS; ERIKA. 
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Chapter 1  
Overview 

This Thesis addresses the use of IEEE 802.15.4/ZigBee as federating 
communication protocols for time-sensitive Wireless Sensor Network 
applications. Their performance, timeliness and reliability features are 
assessed and new mechanisms proposed for engineering large-scale 
embedded computing applications with stringent Quality of Service 
(QoS) requirements. This chapter overviews the research context and 
objectives and also outlines the major contributions of this work.  

1.1 Introduction 
The widespread use of laptops, cell phones, PDAs, GPS receivers, RFID, and intelligent 
electronics in the post-PC era, represents a gigantic step towards an increasing 
miniaturization and ubiquity of modern embedded systems. With it, computing devices 
have become cheaper, more mobile, more distributed, and more pervasive in everyday 
life, creating an eagerness for monitoring and controlling everything, everywhere [1]. 
These advancements in information and communication technology (namely on 
memories, batteries, energy scavenging techniques and hardware design), and the 
necessity of large-scale communication infrastructures, triggered the birth of the 
Wireless Sensor Network (WSN) paradigm.  

In the upcoming years, wireless communication will be embedded in everyday 
objects, such as clothes, gadgets, toys, home appliances, food carts to cars, bridges, 
roads, farm lands, buildings, animals and people. The integration of a wireless module is 
not just enabling a way to communicate but it is a means to make objects smarter and 
granting those new abilities [2]. Wireless Sensor Networks will enable a wide range of 
new applications and usages like building automation (e.g. security, HVAC, lighting 
control, access control), consumer electronics (e.g. TV/VCR/DVD/CD remote control), 
industrial automation (e.g. asset management, process control, environmental control, 
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energy management) and personal health care (e.g. body sensor networks). This 
computing ubiquity will help improving the quality of life and change the way 
individuals perceive the world.  

However, for this to become a reality, many new problems and challenges must be 
overcome in WSNs as their paradigm differs from traditional wireless networks. There is 
the need for low cost devices enabling large-scale networked embedded systems (as 
there can be hundreds or thousands of nodes scattered in large regions) and energy 
requirements that impose low communication rates and ranges and low duty cycles. 
Some of the most important challenges in WSNs are related to energy-efficiency, 
scalability, routing, mobility, reliability, timeliness, security, clustering, localization and 
synchronization.  

In fact, while some of the applications enumerated previously do not pose stringent 
timing requirements (environmental monitoring or precision agriculture), others, like 
industrial automation and process control [3-5], will rely heavily on the timing behaviour 
of the overall system (applications, operating system and networks). Moreover, the 
ubiquity and pervasiveness of future distributed systems will lead to a very tight 
integration and interaction between embedded computing devices and the physical 
environment, via sensing and actuating actions. Such cyber-physical systems require a 
rethinking in the usual computing and networking concepts, and given that the 
computing entities closely interact with their environment, timeliness is of increasing 
importance.  

This Thesis addresses the use of standard protocols combined with Commercial-off-
the-shelf (COTS) technologies as a baseline to enable WSN infrastructures capable of 
supporting the Quality of Service (QoS) requirements that future large-scale embedded 
computing systems will impose. 

There is a wide range of wireless communication protocol standards for a wide range 
of applications (e.g. voice, video and general data communications), each of them setting 
a compromise between bit rate and radio coverage, according to their target application 
scenarios (personal, local, metropolitan and wide). However there is a need for 
communication protocols that meet the needs of WSN applications. In general, WSNs do 
not impose stringent requirements in terms of bandwidth, but they require low energy 
consumption so that network/nodes lifetime is prolonged as much as possible. In fact, 
meeting energy requirements is most often the main goal of WSNs protocols and 
technologies. 

The joint efforts of the IEEE 802.15.4 Task Group [6] and the ZigBee Alliance [7] 
have ended up with the specification of a standard protocol stack for Low-Rate Wireless 
Personal Area Networks (LR-WPANs), an enabling technology for Wireless Sensor 
Networks (WSNs) [8-9]. Therefore, we aim at using the IEEE 802.15.4 and ZigBee 
protocols as a baseline, and COTS technologies, like the TinyOS and ERIKA operating 
systems, the MICAz and TelosB motes, and the FLEX hardware platforms. 

Traditionally, the use of COTS technologies leads to easier, faster and widespread 
development, deployment and adoption. Our feeling is that the same case applies to the 
WSN area which motivates the work in this Thesis.  
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1.2 Research Context 
This work has been developed within the context of the ART-WiSE (Architecture for 
Real-Time communications in Wireless Sensor Networks) research framework [10-12] 
aiming at the specification of a scalable two-tiered communication architecture for 
improving the timing and reliability behaviour of WSNs. One of the major goals in 
ART-WiSe is to rely as far as possible on existing standard communication protocols 
and commercial-off-the-shelf (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 
and IEEE 802.11 for Tier 2. This Thesis was developed in synergy with this research 
framework. 

1.3 Research Objectives 
The main objective of this Thesis is to assess the adequateness of current standard and 
COTS technology, for enabling large-scale wireless sensor network applications with 
QoS requirements. The hypothesis is that this is possible by using the IEEE 802.15.4 and 
ZigBee protocols combined with commercial hardware/software platforms.  

This Thesis addresses the performance analysis of these protocols as well as of some 
additional mechanisms that enable QoS improvement. 

1.4 Research Contributions 
The main research contributions of this Thesis are1: 
 

− Performance evaluation of the IEEE 802.15.4 Slotted CSMA-CA mechanism, 
comparing experimental results with the ones obtained from the IEEE 802.15.4 
simulation model, as proposed in [13] and presented in Chapter 4.  

− Collaboration in the design, implementation and performance evaluation of a 
hidden-node avoidance mechanism for Wireless Sensor Networks (H-NAMe). 
This work was proposed in [14] and is presented in Chapter 5.  

− Collaboration in the design, implementation and experimental analysis of the 
worst-case dimensioning of ZigBee Cluster-tree networks. This work was 
proposed in [15], [16], and is described in Chapter 6. 

− Implementation of the IEEE 802.15.4/ZigBee protocol stack over the ERIKA 
real-time operating system, as proposed in [17] and presented in Chapter 7.  

− Contribution to the Open-ZB protocol stack implementation [18] by 
implementing the GTS mechanism for ZigBee Cluster-tree networks [19]. 

− Collaboration with the TinyOS Network Protocol Working Group [20] to 
implement a ZigBee compliant stack for TinyOS 2.0. 

− Identification of a set of hardware and software problems and limitations of the 
Open-ZB protocol stack implementation over TinyOS for the TelosB and 
MICAz motes, as proposed in [21] and described in Chapter 8. 

 

                                                           
1 All publications related to this Thesis are available at http://www.hurray.isep.ipp.pt/ 
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1.5 Structure of this Thesis 
The remainder of this Thesis is structured as follows. Chapter 2 provides an overview of 
the most relevant aspects of the IEEE 802.15.4 and ZigBee protocols in the context of 
this Thesis. Chapter 3 presents the technological context and the development tools 
employed throughout this Thesis, including hardware platforms, operating systems, 
simulation tools, network analysers, and the Open-ZB protocol stack.  

The performance evaluation of the IEEE 802.15.4 Slotted CSMA/CA mechanism is 
addressed in Chapter 4, comparing experimental and simulation results. This chapter 
presents the impact of some MAC parameters in the Network Throughput and 
Probability of Successful transmissions. 

Chapter 5 presents a hidden-node avoidance mechanism and describes how it was 
instantiated in ZigBee and validated in an experimental testbed. 

Chapter 6 addresses the test and validation of a methodology for modelling cluster-
tree WSNs, for computing the worst-case end-to-end delays, buffering and bandwidth 
requirements across any source-destination path in the cluster-tree.  

A software implementation of the Open-ZB IEEE 802.154/ZigBee protocol stack 
over the ERIKA real-time operating system is presented in Chapter 7, along with some 
experimental results based on real hardware platforms. 

Chapter 8 presents an experimental analysis of the impact of the hidden-node 
problem over a target tracking application scenario. Some lessons learned from our 
knowledge on experimental work are also addressed in this chapter. 

The Thesis concludes with Chapter 9, which summarizes the presented contributions 
and identifies topics for future research. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 

Chapter 2  
Overview of IEEE 802.15.4 and ZigBee 

This chapter presents the most important features of the IEEE 802.15.4 
protocol and ZigBee protocols. It particularly focuses on the IEEE 
802.15.4 Data Link and ZigBee Network Layers, which are the most 
relevant in the context of this Thesis.  

2.1 General Aspects 
ZigBee defines two layers of the OSI (Open Systems Interconnection) model: the 
Application Layer (APL) and the Network Layer (NWL), as depicted in Figure 1. Each 
layer performs a specific set of services for the layer above. The different layers 
communicate through Service Access Points (SAP’s). These SAPs enclose two types of 
entities: (1) a data entity (NLDE-SAP) to provide data transmission service and (2) a 
management entity (NLME-SAP) providing all the management services between 
layers. 

The ZDO is also responsible for communicating information about itself and its 
provided services. The ZDO is located in EndPoint 0. The Application Objects are the 
manufacturer’s applications running on top of the ZigBee protocol stack. These objects, 
located between Endpoints 1 to 240, adhere to a given profile approved by the ZigBee 
Alliance. The address of the device and the EndPoints available provide a uniform way 
of addressing individual application objects in the ZigBee network. The set of ZDOs, 
their configuration and functionalities form a ZigBee profile. The ZigBee profiles intent 
to be a uniform representation of common application scenarios. Currently, the ZigBee 
available profiles include the Network Specific (stack identifier 0); Home Controls 
(stack identifier 1); Building Automation (stack identifier 2) and Plant Control (stack 
identifier 3). 
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Figure 1 - ZigBee architecture [7] 

 
The ZigBee Network Layer (NWK) is responsible for Network management 

procedures (e.g. nodes joining and leaving the network), security and routing. It also 
encloses the neighbour tables and the storage of related information. The NWK Layer 
provides one set of interfaces, the Network Layer Data Entity Service Access Point 
(NLDE-SAP) used to exchange data with the APS. 

IEEE 802.15.4/ZigBee devices can be classified according to their functionalities: 
Full Function Devices (FFD) implement the full IEEE 802.15.4/ZigBee protocol stack; 
Reduced Function Devices (RFD) implement a subset of the protocol stack.  

Regarding the devices role in the network, ZigBee defines 3 types of devices: 
− ZigBee Coordinator (ZC): One for each ZigBee Network; Initiates and 

configures Network formation; Acts as an IEEE 802.15.4 Personal Area 
Network (PAN) Coordinator; Acts as ZigBee Router (ZR) once the network is 
formed; Is a Full Functional Device (FFD) – implements the full protocol 
stack; If the network is operating in beacon-enabled mode, the ZC will send 
periodic beacon frames that will serve to synchronize the rest of the nodes. In a 
Cluster-Tree network all ZR will receive beacon from their parents and send 
their own beacons to synchronize nodes belonging to their clusters 

− ZigBee Router (ZR): Participates in multi-hop routing of messages in mesh and 
Cluster-Tree networks; Associates with ZC or with previously associated ZR in 
Cluster-Tree topologies; Acts as an IEEE 802.15.4 PAN Coordinator; Is a Full 
Functional Device (FFD) – implements the full protocol stack. 

− ZigBee End Device (ZED): Does not allow other devices to associate with it; 
Does not participate in routing; It is just a sensor/actuator node; Can be a 
Reduced Function Device (RFD) – implementing a reduced subset of the 
protocol stack. 
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Throughout this Thesis, the names of the devices and their acronyms are used 
interchangeably. 

ZigBee/IEEE 802.15.4 enables three network topologies – star, mesh and cluster-tree 
(Figure 2). 

 
 

a) star topology b) mesh topology 

 
c) cluster-tree topology 

Figure 2 - ZigBee network topologies 

In the star topology (Figure 2 a), a unique node operates as a ZC. The ZC chooses a 
PAN identifier, which must not be used by any other ZigBee network in the vicinity. 
The communication paradigm of the star topology is centralized, i.e. each device (FFD 
or RFD) joining the network and willing to communicate with other devices must send 
its data to the ZC, which dispatches it to the adequate destination. The star topology may 
not be adequate for traditional Wireless Sensor Networks for two reasons. First, the 
sensor node selected as a ZC will get its battery resources rapidly ruined. Second, the 
coverage of an IEEE 802.15.4/ZigBee cluster is very limited while addressing a large-
scale WSN, leading to a scalability problem. 

The mesh topology (Figure 2 b) also includes a ZC that identifies the entire network. 
However, the communication paradigm in this topology is decentralized, i.e. each node 
can directly communicate with any other node within its radio range. The mesh topology 
enables enhanced networking flexibility, but it induces additional complexity for 
providing end-to-end connectivity between all nodes in the network. Basically, the mesh 
topology operates in an ad-hoc fashion and allows multiple hops to route data from any 
node to any other node. In contrast with the star topology, the mesh topology may be 
more power-efficient and the battery resource usage is fairer, since the communication 
process does not rely on one particular node. 

The cluster-tree network topology (Figure 2 c) is a special case of a mesh network 
where there is a single routing path between any pair of nodes and there is a distributed 
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synchronization mechanism (IEEE 802.15.4 beacon-enabled mode). There is only one 
ZC which identifies the entire network and one ZR per cluster. Any of the FFD can act 
as a ZR providing synchronization services to other devices and ZRs.   

Table 1 summarizes some of the differences between ZigBee mesh and cluster-tree 
topologies. 

Table 1 – ZigBee Mesh vs. Cluster-Tree 

 
 
The synchronization (beacon-enabled mode) feature of the cluster-tree model may be 

seen both as an advantage and as a disadvantage, as reasoned next. 
On one hand, synchronization enables dynamic duty-cycle management in a per 

cluster basis, allowing nodes (ZEDs and ZRs) to save their energy by entering the sleep 
mode. In contrast, in the mesh topology as defined in the IEEE 802.15.4 standard 
specification, only the ZEDs can have inactive periods. These energy saving periods 
enable the extension of the network lifetime, which is one of the most important 
requirements of WSNs. In addition, synchronization allows the dynamic reservation of 
guaranteed bandwidth in a per-cluster basis, through the allocation of Guaranteed Time 
Slots in the Superframe Contention Free Period (CFP). This enables the worst-case 
dimensioning of cluster-tree ZigBee networks, namely it is possible to compute worst-
case message end-to-end delays and ZigBee Router buffer requirements. 

On the other hand, managing the synchronization mechanism throughout the cluster-
tree networks is a very challenging task. Even if we can cope with minor 
synchronization drifts between ZRs, this problem can grow for larger cluster-tree 
networks (higher depths). As previously mentioned, the de-synchronization of a cluster-
tree network leads to collision problems due to overlapping Beacons and Superframes. 
For instance, the CAP of one cluster can overlap the CFP of another cluster, which is not 
admissible.  

Regarding the routing protocols, the tree routing protocol in the cluster-tree is lighter 
that the mesh routing protocol (AODV) in terms of memory and processing 
requirements. The routing overhead, as compared with the AODV [22] in the mesh 
topology, is reduced. Note that the tree routing protocol considers just one path from any 
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source to any destination, thus it does not consider redundant paths, in contrast to 
AODV. Therefore, the tree routing protocol is prone to the single point of failure 
problem, while that can be avoided in mesh networks if alternative routing paths are 
available (more than one ZigBee Router within radio coverage).  

Note that if there is a fault in a ZigBee Router, network inaccessibility times may be 
inadmissible for applications with critical timing and reliability requirements. Therefore, 
designing and engineering energy and time-efficient fault-tolerance mechanisms to 
avoid or at least minimize the single point of failure problem in ZigBee cluster-tree 
networks is of crucial importance. 

Besides the Beacon/Superframe scheduling and the single-point-of-failure problems, 
there are other implementation-related obstacles that makes the use of the cluster-tree 
topology a challenging task, such as: (1) the dynamic network resynchronization, for 
instance in case of a new cluster joining or leaving the network; (2) the dynamic 
rearrangement of the all the duty cycles in the case of a router failure; (3) a new router 
association or even rearranging the superframe duration of some routers to adapt the 
bandwidth allocated to that branch of the tree; (4) the rearrangement of the addressing 
space allocated to each router; and (5) supporting mobility of nodes, routers or even hole 
clusters. 

From our perspective, all these impairments have lead to the lack of commercial or 
academic solutions based on the ZigBee cluster-tree model. Nevertheless, we consider 
this model as a promising and adequate solution for WSN applications with timeliness 
and energy-efficiency requirements, which triggered us to implement it and explore its 
potential.  

2.2 ZigBee Network Layer 
The ZigBee Network Layer is responsible for network management (e.g. 
association/disassociation, starting the network, addressing, device configuration and the 
maintenance of the NIB - NWK Information Base) and formation, message routing and 
security-related services. 

The ZigBee Network Layer supports two service entities. The Network Layer Data 
Entity (NLDE) provides a data service, allowing the transmission of data frames and 
topology specific routing. Figure 3 depicts the Network Layer reference model. 

 
Figure 3 - Network Layer reference model [7] 
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Joining and leaving a network must be supported by all ZigBee Devices. Both 
ZigBee Coordinators and Routers must support the following additional functionalities: 

− Permit devices to join the network using the following: 
− Association indications from the MAC sub-layer; 
− Explicit join requests from the application. 

− Permit devices to leave the network using the following: 
− Network Leave command frames; 
− Explicit leave requests from the application. 

− Participate in assignment of logical network addresses. 
− Maintain a list of neighbouring devices. 

The ZigBee Coordinator also defines some important additional network parameters. 
It determines the maximum number of children (Cm) any device is allowed to have. 
From this set of children, a maximum number (Rm) of devices can be router-capable 
devices. The remaining are ZEDs. Every device has an associated depth, representing 
the number of hops a transmitted frame must travel, using only a parent-child links, to 
reach the ZigBee Coordinator. The ZC has a depth of 0, while its children have a depth 
of 1. The ZC also determines the maximum depth (Lm) of the network. The maximum 
number of children, routers and network depth are used for calculating the addresses of 
the devices in the network, in a distributed address scheme. 

2.2.1 Short Address Assignment 
A parent device uses the Cm, Rm, and Lm values to compute a Cskip function defining the 
size of the address sub-block that is distributed by each parent depending on its depth (d) 
in the network. For a given network depth d, Cskip(d) is calculated as follows: 
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= −−

   Otherwise               ,
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)d(Cskip 1dLm  
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A parent device that has a Cskip(d) value of zero is not capable of accepting children 

and must be treated as an end device. A parent device that has a Cskip(d) value greater 
that zero must accept devices and assigns addresses if possible. A parent device assigns 
an address that is one greater than its own to the first router that associated. The next 
associated router receives an address that is separated according to the return value of 
the Cskip(parent depth) function. The maximum number of associated routers is defined 
in the network parameter nwkMaxRouters (Rm). 

Considering a parent node with a depth d and an address of Aparent, the number of 
child devices n is between 1 and Cm-Rm. 

 
( )mm RCn1 −≤≤  (2.2) 

 
The Achild address of the nth child router is calculated according to Eq. 2.3(n is the 

number of child routers): 
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The Achild address of the nth child end device is calculated according to Eq. 2.4 (n is 

the number of child end devices): 
 

( ) ndCskipRmAA parentchild +×+=  (2.4) 

 
Figure 4 depicts an example of an address assignment scheme.  The parameters used 

in the address assignment are the following: maximum depth (Lm) = 3, maximum 
children (Cm) = 6 and maximum routers (Rm) = 4. 

 

 
Figure 4 - Address assignment scheme example  

Figure 5 shows the ZigBee Coordinator (0x0000) available addressing scheme. 
Considering the above network parameters, the ZigBee Coordinator is allowed to 
associate up to A4 routers and 2 end devices in its available address pool. On the other 
hand, the ZR (0x0020) is allowed to associate up to 4 ZRs and 6 ZEDs. 
 
 

 
 
 
 
 

Figure 5 - ZigBee Coordinator addressing scheme (de cimal values) 

 

Depth = 0 
Cskip(0) = 31 

Depth = 1 
Cskip(1) = 7 

Depth = 2 
Cskip(2) = 1 
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2.2.2 ZigBee Routing 
ZigBee Coordinators and Routers must provide the following functionalities: 

− Relay data frames on behalf of higher layers; 
− Relay data frames on behalf of other ZR; 
− Participate in route discovery in order to establish routes for subsequent data 

frames; 
− Participate in route discovery on behalf of end devices; 
− Participate in end-to-end route repair; 
− Participate in local route repair; 
− Employ the ZigBee path cost metric as specified in route discovery and route 

repair. 
 
Additionally, ZigBee Coordinators and Routers may provide the following 

functionalities: 
− Maintain routing tables in order to remember best available routes; 
− Initiate route discovery on behalf of higher layers; 
− Initiate route discovery on behalf of other ZR; 
− Initiate end-to-end route repair; 
− Initiate local route repair on behalf of other ZR. 

2.2.3 Routing Schemes 
ZigBee Coordinators and Routers support three types of routing: 

− Neighbour Routing – based on a neighbour tables that contains the information of 
all the devices within radio coverage. If the target device is physically in range 
the message can be sent directly. Note that ZEDs cannot do this. 

− Table Routing - Ad-hoc On Demand Distance Vector (AODV) [22], based on 
routing and route discovery tables with the path cost metrics; 

− Tree-Routing - based on the address assignment schemes; messages are 
hierarchically routed upstream/downstream the tree. 

 

Neighbour Routing 
This type of routing uses the neighbour tables. If the target device is physically in range 
it is possible to send messages directly to the destination. Physically in range means that 
the source ZC or ZR has a neighbour table entry for the destination. This routing 
mechanism is mostly used as addition to other routing mechanisms and for the ZigBee 
Routers to route messages to its children devices, when they are the destination. 

Table Routing - Ad-hoc On-Demand Distance Vector (AODV) 
ZigBee Table Routing is based on the AODV routing algorithms. Each ZigBee 
Coordinator and Router that supports this Table Routing must maintain two tables: 
(1) the routing table, a long-lived and persistent table with the information of routes, and 
(2) a route discovery table with the information of the route discovery procedures where 
each entry only lasts the duration of the discovery. 
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The Ad-hoc On Demand Distance Vector (AODV) [22] routing protocol was 
designed for ad hoc mobile networks. AODV is capable of both unicast and multicast 
routing. AODV allows mobile nodes to obtain routes quickly for new destinations, and 
does not require nodes to maintain routes to destinations that are not in active 
communication.  AODV allows mobile nodes to respond to link breakages and changes 
in network topology in a timely manner. The operation of AODV is loop-free, and by 
avoiding the Bellman-Ford "counting to infinity" problem offers quick convergence 
when the ad-hoc network topology changes (typically, when a node moves in the 
network).  When the link breaks, AODV causes the affected set of nodes to be notified 
so that they are able to invalidate the routes using the lost link. It is an on demand 
algorithm, meaning that it builds routes between nodes only if requested by source 
nodes. It maintains these routes as long as they are needed by the sources. Additionally, 
AODV can form trees, connecting multicast groups, composed of the group members 
and the nodes needed to connect. AODV uses sequence numbers to ensure the freshness 
of routes. It is loop-free, self-starting, and scales to larger numbers of nodes. 

 
In ZigBee Networks, the routing management is done by the means of NWK 

command frames. The available commands are the following: 
− Route request – Command send to search for a route to a specified device, can 

also be used to repair a route 
− Route reply – Command send in response of a route request, also used to request 

state information 
− Route Error – notification of a source device of the data frame about the failure in 

forwarding the frame: 
− Leave – notification of a device leaving the network 
− Route Record – notification of a list of nodes used in relaying a data frame 
− Rejoin request – notification of a device rejoining the network 
− Rejoin response – rejoin response of a rejoin request 

 
The route choice for a communication flow is based on the total link cost represented 

by C, meaning that the path with the lowest cost is chosen. The total link cost is the sum 
of individual point-to-point link cost.  

The calculation of C is as follows: for a defined path P where L defines the length of 
a set of devices [D 1,D2, … DL]  and a link [D i, Di+1]  the path cost C is defined as: 
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Each C{[D 1,Di+1]}  is the individual point-to-point link cost, calculated by the 

following formulation: 
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where pl is defined as the probability of packet delivery through link l. 
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The link probability estimation factors are implementation specific, but generally it 
they are based on the counting of the received beacons and data frames in order to detect 
packet loss and in the estimation of the Link Quality Indicator (LQI). 

Tree-Routing 
This routing mechanism is based on the short addressing scheme and was initially 
proposed by MOTOROLA [23]. Each device, upon the reception of a data frame, reads 
the routing information fields and checks the destination address. If the destination is a 
child of the device (neighbour table check), the device relays the packet to the 
appropriate address. If the destination address is not a child, the device must check if the 
address is a descendent using the condition in 2.7, where A is device network address, D 
the destination address and d the device depth in the network.  
 

( )1dCskipADA −+<<  (2.7) 
 

The next hop (N) address when routing down is given by: 
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If the destination address is not a descendant, the device relays the packet to its 

parent.  
Consider the network scenario illustrated in Figure 4 and the following network 

parameters: Lm = 3; Cm = 6; Rm =  4. The Cskip values are presented in Table 2. 
 

Table 2 - Cskip example values 

Depth Cskip(Depth) 
0 31 
1 7 
2 1 

If ZR 0x0002 transmits a message to ZR 0x0028, the tree-routing protocol behaves 
as follows: 

1. ZR 0x0002 builds the data frame and sends it to its parent (0x0001). The most 
relevant fields of this data frame are outlined next: 

− MAC destination address – 0x0001; 

− MAC source address – 0x0002; 

− Network Layer Routing Destination Address – 0x0028; 

− Network Layer Routing Source Address – 0x0002; 

 

2. ZR 0x0001 receives the data frame, realizes that the message in not for him and has 
to be relayed. The device checks its neighbour table for the routing destination 
address, trying to find if the destination is one of its child devices. Then, the device 
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checks if the routing destination address is a descendant by verifying condition in 
2.7 that results in: 

 
0x0001 < 0x0028 < 0x0001 + 7 

 
Note that ZR 0x0001 is a depth 1 device in the network. After verifying that the 

destination is not a descendant, ZR 0x0001 routes the data frame to its parent, ZC 
0x0000. The most relevant fields of this data frame are outlined next: 

− MAC destination address – 0x0000; 

− MAC source address – 0x0001; 

− Network Layer Routing Destination Address – 0x0028; 

− Network Layer Routing Source Address – 0x0002; 

3. ZC 0x0000 receives the data frame and verifies if the routing destination address 
exists in its neighbour table. After realizing that the destination device is not its 
neighbour, since the ZC is the root of the tree and cannot route up, the next hop 
address is calculated as follows: 
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The next hop address results in N = 32 (decimal) = 0x0020. The most relevant fields 

of this data frame are outlined next: 

− MAC destination address – 0x0020; 

− MAC source address – 0x0000; 

− Network Layer Routing Destination Address – 0x0028; 

− Network Layer Routing Source Address – 0x0002; 

4. ZR 0x0020 receives the data frame and checks its neighbour table for the routing 
destination address. After verifying that the address is its neighbour, the message is 
routed to it. The next hop is assigned with the short address present in the respective 
neighbour table entry. The most relevant fields of this data frame are outlined next: 

− MAC destination address – 0x0028; 

− MAC source address – 0x0020; 

− Network Layer Routing Destination Address – 0x0028; 

− Network Layer Routing Source Address – 0x0002; 

2.3 IEEE 802.15.4 Protocol Standard 
The IEEE 802.15.4 Full Function Devices (FFD) have three different operation modes:  
 

− The Personal Area Network (PAN) Coordinator: the principal controller of the 
PAN. This device identifies its own network as well as its configurations, to 
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which other devices may be associated. In ZigBee, this device is referred to as the 
ZigBee Coordinator (ZC). 

− The Coordinator: provides synchronization services through the transmission of 
beacons. This device should be associated to a PAN Coordinator and does not 
create its own network. In ZigBee, this device is referred to as the ZigBee Router 
(ZR). 

− The End Device: a device which does not implement the previous functionalities 
and should associate with a ZC or ZR before interacting with the network. In 
ZigBee, this device is referred to as the ZigBee End Device (ZED). 

 
The Reduced Function Device (RFD) is an end device operating with the minimal 

implementation of the IEEE 802.15.4. An RFD is intended for applications that are 
extremely simple, such as a light switch or a passive infrared sensor; they do not have 
the need to send large amounts of data and may only associate with a single FFD at a 
time. 

Throughout this Thesis the IEEE 802.14.5 operational modes and the ZigBee device 
names are used interchangeably (e.g. PAN Coordinator = ZigBee Coordinator, 
Coordinator = ZigBee Router and End Device = ZigBee End Device). The designation 
of Coordinator represents both ZC and ZRs. 

2.3.1 Physical Layer 
The IEEE 802.15.4 physical layer is responsible for data transmission and reception 
using a certain radio channel and according to a specific modulation and spreading 
technique. 

The IEEE 802.15.4 offers three operational frequency bands: 2.4 GHz, 915 MHz and 
868 MHz (Figure 6). There is a single channel between 868 and 868.6 MHz (20 kbit/s), 
10 channels between 902 and 928 MHz (40 kbit/s), and 16 channels between 2.4 and 
2.4835 GHz (250 kbit/s). The protocol also allows dynamic channel selection, a channel 
scan function in search of a beacon, receiver energy detection, link quality indication 
and channel switching. 

 

 
Figure 6 - Operating frequencies and bands [24] 
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All of these frequency bands are based on the Direct Sequence Spread Spectrum 
(DSSS) spreading technique.  

The physical layer of IEEE 802.15.4 is in charge of the following tasks: 
 

− Activation and deactivation of the radio transceiver: The radio transceiver may 
operate in one of three states: transmitting, receiving or sleeping. Upon request 
of the MAC sub-layer, the radio is turned ON or OFF. The turnaround time 
from transmitting to receiving and vice versa should be no more than 12 
symbol periods, according to the standard (each symbol corresponds to 4 bits). 

− Energy Detection (ED): Estimation of the received signal power within the 
bandwidth of an IEEE 802.15.4 channel. This task does not make any signal 
identification or decoding on the channel. The energy detection time should be 
equal to 8 symbol periods. This measurement is typically used by the Network 
Layer as a part of channel selection algorithm or for the purpose of Clear 
Channel Assessment (CCA), to determine if the channel is busy or idle. 

− Link Quality Indication (LQI): Measurement of the Strength/Quality of a 
received packet. It measures the quality of a received signal. This measurement 
may be implemented using receiver ED, a signal to noise estimation or a 
combination of both techniques.  

− Clear Channel Assessment (CCA): Evaluation of the medium activity state: 
busy or idle. The CCA is performed in three operational modes: (1) Energy 
Detection mode: the CCA reports a busy medium if the detected energy is 
above the ED threshold. (2) Carrier Sense mode: the CCA reports a busy 
medium only is it detects a signal with the modulation and the spreading 
characteristics of IEEE 802.15.4 and which may be higher or lower than the ED 
threshold. (3) Carrier Sense with Energy Detection mode: this is a combination 
of the aforementioned techniques. The CCA reports that the medium is busy 
only if it detects a signal with the modulation and the spreading characteristics 
of IEEE 802.15.4 and with energy above the ED threshold. 

− Channel Frequency Selection: The IEEE 802.15.4 defines 27 different wireless 
channels. Each network can support only part of the channel set. Hence, the 
physical layer should be able to tune its transceiver into a specific channel 
when requested by a higher layer.  

2.3.2 Medium Access Control (MAC) Sub-layer 
The MAC protocol supports two operational modes (Figure 7): 
− The non beacon-enabled mode. When the ZC selects the non-beacon enabled 

mode, there are neither beacons nor superframes. Medium access is ruled by an 
unslotted CSMA/CA mechanism (refer to Section 2.2.6). 

− The beacon-enabled mode. In this mode, beacons are periodically sent by the ZC 
or ZR to synchronize nodes that are associated with it, and to identify the PAN. A 
beacon frame delimits the beginning of a superframe (refer to Section 2.2.3) 
defining a time interval during which frames are exchanged between different nodes 
in the PAN. Medium access is basically ruled by Slotted CSMA/CA. However, the 
beacon-enabled mode also enables the allocation of contention free time slots, 
called Guaranteed Time Slots (GTSs) for nodes requiring guaranteed bandwidth. 
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Figure 7 - IEEE 802.15.4 Operational Modes 

Superframe Structure 
The superframe is defined between two beacon frames and has an active period and an 
inactive period. Figure 8 depicts the IEEE 802.15.4 superframe structure. 

 
Figure 8 - IEEE 802.15.4 Superframe Structure [24] 

 
The active portion of the superframe structure is composed of three parts, the 

Beacon, the Contention Access Period (CAP) and the Contention Free Period (CFP): 
− Beacon: the beacon frame is transmitted at the start of slot 0. It contains the 

information on the addressing fields, the superframe specification, the GTS 
fields, the pending address fields and other PAN related. 

− Contention Access Period (CAP): the CAP starts immediately after the beacon 
frame and ends before the beginning of the CFP, if it exists. Otherwise, the 
CAP ends at the end of the active part of the superframe. The minimum length 
of the CAP is fixed at aMinCAPLength = 440 symbols. This minimum length 
ensures that MAC commands can still be transmitted when GTSs are being 
used. A temporary violation of this minimum may be allowed if additional 
space is needed to temporarily accommodate an increase in the beacon frame 
length, needed to perform GTS management. All transmissions during the CAP 
are made using the Slotted CSMA/CA mechanism. However, the 
acknowledgement frames and any data that immediately follows the 
acknowledgement of a data request command are transmitted without 
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contention. If a transmission cannot be completed before the end of the CAP, it 
must be deferred until the next superframe. 

− Contention Free Period (CFP): The CFP starts immediately after the end of the 
CAP and must complete before the start of the next beacon frame (if BO equals 
SO) or the end of the superframe. Transmissions are contention-free since they 
use reserved time slots (GTS) that must be previously allocated by the ZC or 
ZR of each cluster. All the GTSs that may be allocated by the Coordinator are 
located in the CFP and must occupy contiguous slots. The CFP may therefore 
grow or shrink depending on the total length of all GTSs.  

In beacon-enabled mode, each Coordinator defines a superframe structure Figure 8 
which is constructed based on: 

− The Beacon Interval (BI), which defines the time between two consecutive 
beacon frames; 

− The Superframe Duration (SD), which defines the active portion in the BI, and 
is divided into 16 equally-sized time slots, during which frame transmissions 
are allowed.  

Optionally, an inactive period is defined if BI > SD. During the inactive period (if it 
exists), all nodes may enter in a sleep mode (to save energy). BI and SD are determined 
by two parameters, the Beacon Order (BO) and the Superframe Order (SO), respectively, 
as follows: 
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aBaseSuperframeDuration = 15.36 ms (assuming 250 kbps in the 2.4 GHz frequency 
band) denotes the minimum duration of the superframe, corresponding to SO=0.  

As depicted in Figure 8, low duty cycles can be configured by setting small values of 
the SO as compared to BO, resulting in greater sleep (inactive) periods. In ZigBee 
Cluster-Tree networks, each cluster can have different and dynamically adaptable duty-
cycles. This feature is particularly interesting for WSN applications, where energy 
consumption and network lifetime are main concerns. Additionally, the Guaranteed 
Time Slot (GTS) mechanism is quite attractive for time-sensitive WSNs, since it is 
possible to guarantee end-to-end message delay bounds both in Star and Cluster-Tree 
topologies. 

Association and Channel Scan Mechanisms 
The association procedure takes place when a device wants to associate with a 
Coordinator. This mechanism can be divided into three separate phases: (1) channel scan 
procedure; (2) selection of a possible parent; (3) association with the parent. 

IEEE 802.15.4 enables four types of channel scan procedures: (1) the energy 
detection scan, where the device obtains a measure of the peak energy in each channel; 
(2) the active scan, where the device locates all Coordinators transmitting beacon 
frames; this scan is performed on each channel by first transmitting a beacon request 
command; (3) the passive scan, where similarly to the active scan, the device locates all 
Coordinator transmitting beacon frames with the difference that the scan is performed 
only in a receive mode, without transmitting beacon requests; and (4) the orphan scan, 
used to locate the Coordinator with which the scanning device had previously 
associated. 
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After the channel scan procedure is completed, the NWK layer receives a list of all 
detected PAN descriptors (containing information about the potential parents). Based on 
the information collected during the scan, the device can choose the most suitable parent 
(that permits associations). The IEEE 802.15.4 protocol standard leaves the way to take 
the association decision to the system designer. Nevertheless one of the most relevant 
parameters to be considered is the Link Quality Indicator (LQI). 

For a device to associate to a Coordinator, it must send an association command 
frame. Then, if the Coordinator accepts the device, it adds it to its neighbour table as its 
child. An association response command frame is, in the case of a successful 
association, sent to the device (via an indirect transmission, refer to Section 2.2.8), 
embedding its short address. Otherwise, in the case of an unsuccessful association, the 
association response embeds the problem status information. The Coordinator replies to 
the association command frame with an acknowledgment embedding the pending data 
control flag active, meaning that it has data ready to be transmitted to the device. The 
association procedure is completed when the device sends a data request command 
frame to the Coordinator requesting the pending data (the association response 
command). After a successful association, the device stores all the information about the 
new PAN by updating its MAC PAN Information Base (MAC PIB) and can start 
transmissions. Figure 9 exemplifies the sequence of messages for a successful 
association request, followed by a data transmission.  

The disassociation from a Coordinator is done via a disassociation request command. 
The disassociation can be initiated either by the device or by the Coordinator. After the 
disassociation procedure, the device loses its short address and is not able to 
communicate. 

 

 
Figure 9 - Association mechanism example 
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The Coordinator updates the list of associated devices, but it can still keep the device 
information for a future re-association. Figure 10 shows a transmission sequence of a 
disassociation request initiated by a device. 

 

 
Figure 10 - Dissassociation mechanism example 

Guaranteed Time Slot (GTS) mechanism 
The GTS mechanism allows devices to access the medium without contention, in the 
CFP. GTSs are allocated by the Coordinator and are used only for communications 
between the Coordinator and a device. Each GTS may contain one or more time slots. 
The Coordinator may allocate up to seven GTSs in the same superframe, provided that 
there is sufficient capacity in the superframe. Each GTS has only one direction: from the 
device to the Coordinator (transmit) or from the Coordinator to the device (receive). 
Figure 11 illustrates message sequence diagram for a GTS allocation. 

 
Figure 11 - GTS allocation message sequence diagram  [24] 

The GTS can be deallocated at any time at the discretion of the Coordinator or the 
device that originally requested the GTS allocation. A device to which a GTS has been 
allocated can also transmit during the CAP. The Coordinator is the responsible for 
performing the GTS management; for each GTS, it stores the starting slot, length, 
direction, and associated device address. All these parameters are embedded in the GTS 
request command. Only one transmit and/or one receive GTS are allowed for each 
device. Upon the reception of the deallocation request the Coordinator updates the GTS 
descriptor list by removing the previous allocated slot and rearranging the remaining 
allocation starting slots. The arrangement of the CFP consists in shifting right the 
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allocated GTS descriptors with starting slot before the recent deallocated GTS descriptor 
and consequently the final CAP slot variable is updated. Figure 12 illustrates an example 
of this procedure. 

 
Figure 12 - CFP defragmentation upon a GTS dealloca tions [24] 

In the Figure 12, the 1st timeline represents the three allocated GTS. The 2nd timeline 
shows the deallocation of GTS 2 that starts on the 10th time slot and has duration of 4 
time slots. The final timeline show GTS 3 shifted right by 4 time slots. The first CTF 
time slot shifted right from slot 8 (in timeline 1) to slot 12 (in timeline 3). 

 The Coordinators monitor GTS activity and if there are no transmissions during a 
defined number of time slots the GTS allocation expires. The expiration occurs if no 
data or no acknowledgement frames are received by the device or by the Coordinator, on 
every 2*n superframes, where n is defined as: 
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



≤≤=
≤≤= −
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CSMA/CA Mechanism 
In IEEE 802.15.4, contention-based MAC (Medium Access Control) can be either 
slotted or unslotted CSMA/CA, depending on the network operation behaviour: beacon-
enabled or non beacon-enabled modes, respectively. 

The CSMA/CA mechanism is based on backoff periods (with the duration of 20 
symbols). Three variables are used to schedule medium access:  

− Number of Backoffs (NB), representing the number of failed attempts to 
access the medium;  

− Contention Window (CW), representing the number of backoff periods that 
must be clear before starting transmission;  

− Backoff Exponent (BE), enabling the computation of the number of wait 
backoffs before attempting to access the medium again. 
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Figure 13 depicts a flowchart describing the slotted version of the CSMA/CA 
mechanism. It can be summarized in five steps:  

1. initialization of the algorithm variables: NB equal to 0; CW equals to 2 and BE 
is set to the minimum value between 2 and a MAC sub-layer constant 
(macMinBE);  

2. after locating a backoff boundary, the algorithm waits for a random defined 
number of backoff periods before attempting to access the medium;  

3. Clear Channel Assessment (CCA) to verify if the medium is idle or not. 
4. The CCA returned a busy channel, thus NB is incremented by 1 and the 

algorithm must start again in Step 2;  
5. The CCA returned an idle channel, CW is decremented by 1 and when it 

reaches 0 the message is transmitted, otherwise the algorithm jumps to Step 3. 
In the slotted CSMA/CA, when the battery life extension is set to 0, the CSMA/CA 

must ensure that, after the random backoff (step 2), the remaining operations can be 
undertaken and the frame can be transmitted before the end of the CAP. If the number of 
backoff periods is greater than the remaining in the CAP, the MAC sub-layer pause the 
backoff countdown at the end of the CAP and defers it to the start of the next 
superframe. If the number of backoff periods is less or equal than the remaining number 
of backoff periods in the CAP, the MAC sub-layer applies the backoff delay and re-
evaluate whether it can proceed with the frame transmission. If the MAC sub-layer do 
not have enough time, it defers until the start of the next superframe, continuing with the 
two CCA evaluations (step 3). If the battery life extension set to 1, the backoff 
countdown must only occur during the first six full backoff periods, after the reception 
of the beacon, as the frame transmission must start in one of these backoff periods. 

 

 
Figure 13 - The Slotted CSMA/CA Mechanism [24] 
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The non slotted mode of the CSMA/CA (Figure 14) is very similar to the slotted 
version except the algorithm does not need to rerun (CW number of times) when the 
channel is idle. 

 
Figure 14 - The Un-slotted CSMA/CA mechanism [24] 

Inter-Frame Spacing (IFS) 
The inter-frame spacing (IFS) is an idle communication period that is needed for 
supporting the MAC sub-layer needs to process data received by the physical layer. To 
allow this, all transmitted frames are followed by an IFS period. If the transmission 
requires an acknowledgment, the IFS will follow the acknowledgement frame. The 
length of the IFS period depends on the size of the transmitted frame: a long inter-frame 
spacing (LIFS) or short inter-frame spacing (SIFS). The selection of the IFS is based on 
the IEEE 802.15.4 aMaxSIFSFrameSize parameter, defining the maximum allowed 
frame size to use the SIFS. The CSMA/CA algorithm takes the IFS value into account 
for transmissions in the CAP. These concepts are illustrated in Figure 15. 
 

 
Figure 15 - Inter-frame spacing [24] 
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Transmission scenarios and reception conditions 
The IEEE 802.15.4 protocol standard enables three different types of transmissions: 

1. Direct transmissions – the frames are transmitted to the medium without any 
channel assessment i.e. the beacon frames, the acknowledgment frames and the 
frames in the GTS time slots; 

2. Indirect transmissions – the frames are stored in the Coordinator to which the 
destination device is associated. Then, the information about the stored frames 
(or pending transmissions) is included in the pending addresses descriptors 
fields of the beacon frame. If a device has pending data in the Coordinator it 
can request it by sending a data request command frame. An example of this 
mechanism is depicted in Figure 16 where the Coordinator beacon contains the 
short address 0x0004 in the pending address list. In the Coordinator neighbour 
table, the short address 0x0004 is associated to the extended address 
0x0000000400000004. Then, the device 0x0004 requests the data with a data 
request message embedding its extended address. The Coordinator searches in 
its neighbour tables for the short address corresponding to the extended address 
received in the command frame and transmit the corresponding pending data. 
In the next Coordinator beacon the pending address list is updated. 

3. Normal transmissions – the frames are transmitted to the medium with 
contention, by applying the CSMA/CA algorithm i.e. data frames and 
command frames transmitted during the CAP. Depending of the operation 
mode (beacon-enabled or non beacon-enabled) the CSMA/CA algorithm has 
two versions, the slotted or the unslotted respectively. 
 

 
Figure 16 - Indirect transmission example 

The IEEE 802.15.4 protocol standard identifies three different transmissions 
scenarios during the CAP: 

− Successful data transmission– the sender successfully transmits the frame to 
the intended recipient. The recipient receives the frame and sends an 
acknowledgment if required. If it is an acknowledged request, the sender starts 
a timer that expires after macAckWaitDuration symbols. Upon the reception of 
the acknowledge frame (before the timer expires), the sender disables and reset 
the timer. The data transfer is completed successfully. 
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− Loss of frame – the sender successfully transmits the frame to the medium but 
it never reaches the destination, so that an acknowledgement frame is not 
transmitted. The sender timer expires (after macAckWaitDuration) and the 
sender retransmits the frame again. This procedure is repeated up to a 
maximum of aMaxFrameRetries times after which the transmission aborts. 

− Loss of acknowledgment - the sender successfully transmits the frame to the 
intended recipient that upon reception replies with an acknowledgement frame. 
The sender never receives the acknowledgment and retries the transmission. 

 
The MAC sub-layer will only accept frames from the Phy layer if it satisfies the 

following requirements: 
− The frame type subfield of the frame control field does not contain an illegal 

frame type; 
− If the frame type indicates that the frame is a beacon frame, the source PAN 

identifier must match macPANId, unless macPANId is equal to 0xffff, in which 
case the beacon frame must be accepted regardless of the source PAN 
identifier; 

− If a destination PAN identifier is included in the frame, it must match 
macPANId or the broadcast PAN identifier (0xffff); 

− If a short destination address is included in the frame, it must match either 
macShortAddress or the broadcast address (0xffff). Otherwise, if an extended 
destination address is included in the frame, it must match aExtendedAddress; 

− If only source addressing fields are included in a data or MAC command 
frame, the frame is accepted only if the device is a Coordinator and the source 
PAN identifier matches macPANId.  



 

 

Chapter 3  
Technological Platforms and Tools 

This chapter describes the technologies used to carry out all of the 
implementation and experimental work presented in this Thesis, like the 
WSN platforms and network analysers used for debugging and analysis. 
It also presents some of the Open-ZB tools like the TinyOS IEEE 
802.15.4/ZigBee protocol stack implementation and the OPNET 
simulation model.  
 
 

3.1 Mote Platforms – The MICAz and TelosB 
The Open-ZB [19] IEEE 802.15.4/ZigBee implementation is supported by two hardware 
platforms, the MICAz [25]  and the TelosB [26] motes. The MICAz mote (Figure 17 
left) has the following features: 

− ATMEL ATmega128L 8-bit microcontroller [27]; 
− CC2420 RF transceiver [28]; 
− 128 KB of Program memory (in-system reprogrammable flash); 
− 4 KB of EEPROM; 
− Supports several sensor boards; 
− UART communication port. 
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Figure 17 - Micaz mote and the block diagram [25] 

Figure 18 left) has the following characteristics: 
-bit microcontroller [29] ; 

CC2420 RF transceiver [28]; 
48 KB of Program memory (in-system reprogrammable flash); 
10 KB of EEPROM; 
Includes a temperature and light sensor; 
UART communication port (USB converter). 

 

Figure 18 - TelosB mote and the block diagram [26] 

The TelosB architecture is slightly different from the one of the MICAz, especially 
bits MSP430 microcontroller [29] as compared to the MICAz 8

Atmega128 microcontroller [27]. This triggers the need for selecting the corresponding 
driver modules already provided in TinyOS and the adaptation of the first 
implementation version, which only supported the MICAz platform, to support the 16
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bits memory block of the MSP430. Both platforms use the same 2.4 GHz Chipcon 
CC2420 radio transceiver [28]. 

3.2 The FLEX Board 
The FLEX [30] was built as an embedded board to exploit the potential of the Microchip 
micro-controllers: the dsPIC family, aiming at the development and test of real-time 
applications. 

Its main features are:  
− DsPIC33FJ256MC710 Microcontroller at 40 MHz [31]; 
− Flexipanel EASYBEE IEEE 802.15.4 Transceiver module [32]; 
− 256 KB of Program memory (in-system reprogrammable flash); 
− modular architecture (done by using daughter boards piggybacking); 
− ICD2 in-circuit programmer connector; 
− the full support of the ERIKA real-time kernel from Evidence Srl; 

 
The compact design allows the employment of FLEX not only for development 

purposes, but also as a suitable solution for the direct deployment of Wireless, 
Acquisition, and Digital control systems. The basic configuration of a FLEX device is 
made by the Base Board. The FLEX Base Board mounts a Microchip dsPIC micro-
controller, and exports almost all the pins of the micro-controller. The user can easily 
connect the desired components to the dsPIC ports in order to build the specific 
application.  

As depicted in Figure 19, several daughter boards can be connected in piggyback to 
the Flex Base Board. The daughter boards have different features and they can be easily 
combined to obtain complex devices. 

 

 

Figure 19 - The FLEX board [30] 

3.3 Programming Interfaces 
The TelosB motes do not need any programmer interface because they already have an 
USB port that can be used to upload programs as well as interfacing the mote with other 
equipments. However, the MICAz mote needs to be programmed using an interface 
board such as the MIB510 (Figure 20 A) [33], the MIB520 (Figure 20 B) [34], and the 
MIB600 (Figure 20 C) [35]. The interface boards MIB510 and MIB520 are very similar 
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except the fact the MIB510 has a serial RS-232 interface and the MIB520 has an USB 
interface. The MIB600 has an RJ-45 Ethernet interface with an implementation of the 
full TCP/IP protocol. These three interface boards allow the use of a JTAG adapter for 
debugging and can be used as base stations interfacing the wireless sensor network with 
a PC. 

 

 
A) MIB510 [33] B) MIB520 [34] C) MIB600 [35] 

Figure 20 - Interface Boards - MIB510, MIB520 and M IB600 

The FLEX boards are programmed through a debugger/programmer device called 
MPLAB ICD2 [36] from Microchip. The MPLAB ICD 2 is a low cost, real-time 
debugger and programmer for selected PIC MCUs and dsPIC® DSCs. Using Microchip 
Technology's proprietary In-Circuit Debug functions, programs can be downloaded, 
executed in real time and examined in detail with the debug functions of MPLAB IDE. 
Set watch variables and breakpoints from symbolic labels in C or assembly source code, 
and single step through C source lines or into assembly code. MPLAB ICD 2 can also be 
used as a development programmer for supported MCUs since it is able to program or 
reprogram the Flash-based microcontroller while installed on the board. 

Some of the features are: 
− USB (Full Speed 2 M bits/s) & RS-232 interface to host PC 
− Real time background debugging 
− MPLAB IDE GUI (free copy included) 
− Built in over-voltage/short circuit monitor 
− Firmware upgradeable from PC 
− Supports low voltage to 2.0 volts. (2.0 to 6.0 range) 
− Diagnostic LEDs (Power, Busy, Error) 
− Reading/Writing memory space and EEDATA areas of target microcontroller 
− Programs configuration bits 
− Erase of program memory space with verification 
− Peripheral freeze-on-halt stops timers at breakpoints 

3.4 IEEE 802.15.4/ZigBee Protocol Analysers 
The implementation of the IEEE 802.15.4/ZigBee has been supported by two network 
protocol analysers (packet sniffers): the Chipcon CC2420 Packet Sniffer for IEEE 
802.15.4 v1.0 [37] and the Daintree IEEE 802.15.4/ZigBee Network Analyser [38]. 
These analysers interpret the IEEE 802.15.4 and ZigBee frames, allowing to debug and 
to validate the implementation of the IEEE 802.15.4/ZigBee protocols.  
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a) Snapshot of the sniffer application 
[37] 

b) CC2420 EB with a CC2420EM [38] 

Figure 21 - Overview of the Chipcon IEEE802.15.4/Zi gBee Packet Sniffer 

The packet sniffer provided by Chipcon (Figure 21), the CC2420 Packet Sniffer for 
IEEE 802.15.4 v1.0 provides a raw list of the packets transmitted. This application 
works in conjunction with a CC2400EB board (Figure 21.b) and a CC2420EM module 
(equipped with a CC2420 radio transceiver). Figure 21.a depicts a snapshot of the sniffer 
application which provides the following features: 

− Raw list of the received packets with timestamp information; 
− Interpretation of the packets information, highlighting the different packet 

fields; 
− Packet fields filtering; 
− Device list. 

 
Chipcon also provides a tool used to test the transceivers, the SmartRF Studio [39]. 

This application interacts with the CC2420EB/CC2420EM evaluation board and allows 
viewing and interacting with the CC2420 transceiver memory registries. With this tool is 
possible to test different configurations on the transceiver and test its behaviour with 
simple send/receive functions. This tool was very useful during the protocol stack 
implementation enabling a better understanding of the physical layer implementation and 
the functionalities of the transceiver. Figure 22 depicts an overview example of the 
Smart RF application interfaces, which provides the following features: 

Read/Write from/to the CC2420 transceiver memory registries (Figure 22.a); 
− Execute functions of the transceiver (e.g. TR ON, TX OFF, etc.) 
− Test transmissions, IEEE 802.15.4 compatible packets or an unmodulated 

carrier; 
− Memory views (Figure 22.b) of the buffers (receive and transmit). 
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a) Registry view b) Memory view 

Figure 22 - Overview Chipcon SmartRF Studio [39] 

The Daintree Network Analyser provides more functionalities than the Chipcon 
sniffer. Besides the received packets list and their field highlighting, it also constructs a 
graphic view of the network topology, including the visualization of routing paths, 
message flows, device states and link quality of the messages, as depicted in Figure 23. 

 

 
Figure 23 - Overview of Daintree Network Analyser [ 38] 
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Another interesting feature, is the network status of the devices by analysing the 
messages transmitted, messages received, loss message ration, bandwidth usage, average 
link quality indicator among others. This application also distinguishes the analysis 
parameters depending on the selected protocol layers. The Daintree Analyser enables the 
import of a plant layout (office floor, factory floor) and overlay the network topological 
view over it. This feature allows dragging and dropping nodes, assigning labels to each 
node and it can be very useful for monitoring the network. 

The hardware used in conjunction with this network analyser is the 2400 Sensor 
Network Adapter [40]. This adapter includes an Ethernet interface and can be used for a 
multiple and synchronized node sniffing, meaning that several 2400 can be scattered 
(connected to an Ethernet network) in a certain geographical area in a way that IEEE 
802.15.4/ZigBee traffic can be collected at different locations of a large-scale network 
into a single application. 

3.5 TinyOS and ERIKA Operating Systems 

3.5.1 About operating systems for resource constrained network embedded nodes 
The Operating System provides an abstraction of the machine hardware and is in charge 
of reacting to events and handling access to memory, CPU, and hardware peripherals. 
Especially in constrained hardware devices like those of sensor boards, the effectiveness 
in the OS paradigms largely affects the response in the target application. The execution 
model is the key factor differentiating the many solutions in existing OSs for WSNs. 
TinyOS [43] uses a stack shared among the processes and no heap. Each instance of the 
task runs until the end of the code unless it is pre-empted by an ISR (Event Handler) 
activated by an event occurrence; ISRs can in turn spawn a new task or call a function 
(command). The task scheduler implements a First Come First Served (FCFS) strategy. 
Lacking priorities and pre-emption, it is impossible to give precedence to more 
important activities. 

Other Operating Systems (e.g. ERIKA [44], nanoRK [45]) allow task pre-emption 
and real-time priority-driven scheduling. 

Tasks can block on certain events, can be woken up (activated) upon the occurrence 
of internal or external events (the reception of a network message or other hardware 
interrupts, or explicit activation by other tasks), or upon expiration of software timers. 
To permit pre-emption, some machine-dependent mechanisms must be implemented to 
save the “context” of the task (registers and stack pointer) at suspension occurrence. 
Such mechanism permits to resume the suspended computation when the task is 
rescheduled. 

An intermediate software solution is given by Contiki [45]. This OS uses a 
monostack memory model for an event-driven kernel. The application programs are 
dynamically loaded at run-time. It supports a thread-like coding style (protothreads) but 
enforcing a sequential flow of control; optionally multi-threading can be adopted, linking 
to a specific library. Table 3 presents some of the well-known operating systems for 
resourced constrained devices. 
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Table 3 - Operating Systems for resource constraine d devices 

 

3.5.2 TinyOS and nesC 
TinyOS [43] is an operating system for embedded systems with an event-driven 
execution model. TinyOS is developed in nesC [47], a language for programming 
structured component-based applications. nesC has a C-like syntax and is designed to 
express the structuring concepts of TinyOS. This includes the concurrency model, 
mechanisms for structuring, naming and linking together software components into 
embedded system applications. The component-based application structure provides 
flexibility to the application design and development. nesC applications are built out of 
components and interfaces.  
The components define two target areas:  

− the specification, a code block that declares the functions it provides 
(implements) and the functions that it uses (calls);  

− the implementation of the functions provided.  
The interfaces are bidirectional collections of functions provided or used by a 

component. The interfaces commands are implemented by the providing component and 
the interface events are implemented by the component using it. The components are 
“wired” together by means of interfaces, forming an application.  

TinyOS defines a concurrency model based on tasks and hardware events 
handlers/interrupts. TinyOS tasks are synchronous functions that run without preemption 
until completion and their execution is postponed until they can execute. Hardware 
events are asynchronous events that are executed in response to a hardware interrupt and 
also run to completion.  
  

Operating  
System 

Origin  Open 
source 

Real
-

time 

Link  

TinyOS UCB, Intel 
(USA) 

Yes No http://www.tinyos.net 

Contiki SICS 
(Sweden) 

Yes No http://www.sics.se/contiki 

Nano-RK CMU (USA) Yes Yes http://www.nanork.org 

ERIKA SSSUP (Italy) Yes Yes http://erika.sssup.it 

MANTIS UC Boulder 
(USA) 

Yes No http://mantis.cs.colorado.edu 

SOS UCLA (USA) Yes No https://projects.nesl.ucla.edu/
public/sos-2x/doc 
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TinyOS directory structure is the following: 
− tinyos-1.x 

− apps – Standard TinyOS application and test programs; 
− contrib – Users contribution (generally the tinyos-1.x directory 

structure is replicated in each contribution); 
− doc – Documentation and On-line Tutorial; 
− tools – Development utilities and programs; 
− tos – TinyOS modules and interfaces. 

− tos 
− interfaces – Interfaces for TinyOS component; 
− lib – Libraries; 
− platform – Drivers for mote hardware; 
− sensorboards – Drivers for sensor boards; 
− system – Drivers for the mote system – EEPROM,UART; 
− types – Special type definition. 

 
Figure 24 depicts the possible interactions between the components and interfaces. 

 
Figure 24 - Arrangement of the components and their  wiring [47] 

The graphical arrangements have the following meaning: 

− A requires interface I , B provides I , and A and B are wired together. 
− C and D both require or both provide J. The direction of the arrow 

indicates that the original wiring is "C = D". 
− E requires function f, and F provides function f. 

 
TinyOS also provides a program called nesdoc that provides a graphical arrangement 

of all the components used by an application. This tool is very useful to understand how 
TinyOS binds all the components. 

3.5.3 ERIKA and RT-Druid 
Erika Enterprise RTOS is a multi-processor real-time operating system kernel, 
implementing a collection of Application Programming Interfaces (APIs) similar to 
those of OSEK/VDX standard for automotive embedded controllers. ERIKA is available 
for several hardware platforms and it introduces innovative concepts, mechanisms and 
programming features to support micro-controllers and multi-core systems-on-a-chip. 

ERIKA features a real-time scheduler and resource managers, allowing the full 
exploitation of the power of new generation micro-controllers and multi-core platforms. 
Tasks in ERIKA are scheduled according to fixed and dynamic priorities, and share 
resources using the Immediate Priority Ceiling protocol. Interrupts always pre-empt the 
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running task to execute urgent operations required by peripherals. RT-Druid is the 
Eclipse-based development environment for ERIKA Enterprise that allows writing, 
compiling, and analyzing an application. RT-Druid is composed by a set of plug-ins for 
the Eclipse Framework [48]. The RT-Druid Core plug-in contains all the internal 
metamodel representation, providing a common infrastructure for the other plug-ins, 
together with ANT scripting support. 

The RT-Druid Code Generator plug-in implements the OIL file editor and 
configurator (for a review on OSEK/VDX standard and OIL language see [49]), together 
with target independent code generation routines for ERIKA Enterprise. The RT-Druid 
Schedulability Analysis plug-in provides the Schedulability Analysis framework, 
implementing algorithms like scheduling acceptance tests, sensitivity analysis, task 
offset calculation, thus including a set of design tools for modelling, analyzing, and 
simulating the timing behaviour of embedded real-time systems. 

3.6 Open-ZB Toolset 
The Open-ZB toolset for the IEEE 802.15.4/ZigBee protocols is available at [19]. 

3.6.1 Open-ZB TinyOS protocol stack  
The Open-ZB [19] development efforts include the implementation of the IEEE 802.15.4 
Data Link Layer and a part of the ZigBee Network Layer. This protocol stack 
implementation is transversal to all experiments described in this Thesis, namely on 
Chapters 4, 5, 6 and 8. The future objectives of the Open-ZB are to implement the full 
IEEE 802.15.4 protocol stack and the full functionalities of the ZigBee Network Layer. 

The first version of the IEEE 802.15.4 implementation only supported the MICAz 
motes [25] and it was conditioned to that hardware platform. The latest version also 
supports the TelosB [26] hardware platform.  

The Open-ZB protocol stack implementation has three main blocks: (1) the hardware 
abstraction layer, including the IEEE 802.15.4 physical layer and the timer module 
supporting both MICAz and TelosB mote platforms; (2) the IEEE 802.15.4 MAC sub-
layer; and (3) the ZigBee Network Layer. The implemented features of the IEEE 
802.15.4 include the slotted version of CSMA/CA algorithm, allowing the testing and 
parameterization of its variables, the different types of transmission scenarios (e.g. 
direct, indirect and GTS  transmissions), association of the devices, channel scans (e.g. 
energy detection and passive scan), beacon management and other mechanisms. Other 
IEEE 802.15.4 features were left out of this implementation version because they are not 
needed for the current research efforts. Features that are not currently supported include 
the unslotted version of the CSMA/CA, the active and orphan channel scan, the use of 
extended addressing fields in normal data transmissions. 

In the ZigBee Network Layer, the currently supported features comprise the data 
transfer between the Network Layer and the MAC sub-layer, the association mechanisms 
and the network topology management (e.g. cluster-tree support by the ZigBee 
Addressing schemes) and routing (e.g. neighbour routing and tree-routing). Security is 
not supported yet.  

We have implemented the beacon-enabled mode of the IEEE 802.15.4 MAC sub-
layer and the required functionalities in the ZigBee Network Layer to support cluster-
tree topologies. TinyOS v1.16 was used over the MICAz and TelosB motes. More 
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recently, though still under testing, we ported our stack to TinyOS v2.0, keeping the 
same software architecture, as a result from our collaboration with the TinyOS Network 
Protocol Working Group [20] to implement a ZigBee compliant stack for TinyOS 2.0. 

Related implementations and hardware  
There are several implementations of the IEEE 802.15.4/ZigBee protocols supported by 
different hardware platforms [49-59]. These were developed in C language and 
programmed directly in the microcontroller without any supporting operating system 
(like TinyOS). Also, in some implementations, the source code is not open, enabling just 
the implementation of top level applications using a pre-defined interface set. In 
addition, these implementations can only be used in the provided hardware platform. 
Additionally these implementations only support the non-beacon enabled mode, 
therefore allowing the construction of ZigBee standard mesh networks (refer to Section 
2.1.1), but not of beacon-enabled Star and Cluster-Tree networks. 

The Ember [50] EmberZNet, compliant with the 2006 ZigBee specification, solution 
works with the EM250 System on Chip and EM260 ZigBee co-processor [50, 51]. 
Freescale Semiconductor [53] also provides a commercial implementation compliant 
with the 2006 ZigBee specification, the BeeStack. The software stack supports several 
Freescale chip platforms, such as the MC13192 [54] and the MC13201 [55].  

The IA USB Dongle [56], developed by Integration Associates [57] provides an USB 
hardware with device drivers that implement a 2006 ZigBee compliant stack. The 
provided drivers allow the integration of the dongle with different operating systems. 
The source code is not provided. 

Texas Instruments developed the Z-Stack [58] that is compliant with the ZigBee 
2006 specification and supports multiple platforms including the CC2431 System-on-
Chip [59], the CC2420 [28] and MSP430 platforms. The Z-Stack is a free 
implementation developed in C language. The ATMEL AVR Z-Link [60] is another 
IEEE 802.15.4 compliant platform that includes a free stack implementation in C with 
available source code. 

Besides the above mentioned companies there are several others with ZigBee 
solutions. Nevertheless, only the mesh network topologies are supported and the 
software implementations are limited. Most of these companies are semiconductor 
companies dedicated to hardware development. 

Refer to [61] for a full list of ZigBee compliant platforms. 

Software Architecture 
The Open-ZB implementation has three main TinyOS components: the Phy, the Mac and 
the NWL (Figure 25). The Mac and the NWL are shared by the two platforms (MICAz 
and the TelosB) and there are two different Phy components, one for each platform. At 
compilation time, the Phy component is selected according to the envisaged platform. 
The need of two different Phy components is due to the fact that the TinyOS hardware 
specific modules are different for each platform. Also, the two platform differ in the 
hardware timers they provide, leading to two different timer modules (the TimerAsync) 
with the purpose of maintaining all asynchronous timer events of the Mac layer (e.g. 
beacon interval, superframe duration, time slots and backoff periods). Nevertheless, the 
software architecture is the same for both platforms. 
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Figure 25 - Protocol stack software architecture 

Table 4 presents the layered view of the different TinyOS components and interfaces 
of the IEEE 802.15.4/ZigBee protocol stack implementation. The organization in 
modules enables the easy and fast development of adaptations/extensions to the current 
implementation. Each of these modules makes use of auxiliary files to implement some 
generic functions (e.g. functions for bit aggregation into variable blocks), constants 
declaration (e.g. layer constants), enumerations (e.g. data types, frame types, response 
status) and data structure definitions (e.g. frame construction data structures).  

The interface files (Figure 25 right side) are used to bind the components and 
represent one Service Access Point (SAP). Each of these interfaces provide functions 
that are called from the higher layer module and are executed/implemented in the lower 
layer module. The interfaces also provide functions used by the lower layer modules to 
signal functions that are executed/implemented in the higher layer modules. For example 
the PD_DATA.nc interface is used by the MacM module to transfer data to the PhyM 
module, that is going to be transmitted, and also enables the signalling by the PhyM in 
the MacM of received data.  
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Table 4 - Functionalities of the implemented protoc ol stack components [62] 

Component Functionalities 

PHY 

Activation  and deactivation of the radio transceiver;  
Energy detection within the current channel;  
Transceiver data management, Received Signal Strength Indication (RSSI) 
readings and channel frequency selection;  
Clear Channel Assessment (CCA) procedure for the CSMA/CA mechanism; 
Data transmission and reception management.  

MAC 

Beacon generation if the device is a Coordinator;  
Synchronization services;  
PAN association and disassociation procedures;  
CSMA/CA as a contention access mechanism;  
GTS management mechanism.  

NWL 

Definition of the network topology (by enabling the device operation as a ZC, 
ZR or ZED); 
Association mechanisms;  
ZigBee addressing schemes;  
Maintenance of neighbour tables;  
Tree-Touting. 

 
Figure 26 depicts the relations between different components of the IEEE 

802.15.4/ZigBee protocol stack implementation. Note that some components used in our  
IEEE 802.15.4/ZigBee protocol stack implementation are already part of the TinyOS 
operating system, namely the hardware components (e.g. the HPL<…>.nc and the 
MSP430<…>.nc modules).  
 

 
Figure 26 - TinyOS implementation diagram [62] 
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In this implementation, there is no direct interaction with the hardware. In fact, 
TinyOS already provides hardware drivers forging a hardware abstraction layer used by 
the Phy component. In Figure 26, observe that the components filled in white are 
hardware components already provided by the TinyOS operating system.  

Refer to an extended implementation technical report in [62] for a detailed 
description of the implementation functions, variables and protocol mechanisms. 

3.6.2 The Open-ZB IEEE 802.15.4 Simulation Model 
The OPNET Modeler [42] is an industry discrete-event network modelling and 
simulation environment. It includes libraries of networking technologies and 
communication protocols, such as the Transmission Control Protocol / Internet Protocol 
(TCP/IP), hypertext transfer protocol (HTTP), open shortest path first routing (OSPF), 
asynchronous transfer mode (ATM), frame relay, IP-QoS, 802.11, or Wi-Fi, and 802.16, 
or even WiMAX. These libraries provide the building blocks used to generate models of 
networks. One of the several add-on modules available from OPNET is the wireless 
module. It extends the functionality of the OPNET Modeler with modelling, simulation 
and analysis of wireless networks. Our simulation model [65] builds on the wireless 
module, an add-on that extends the functionality of the OPNET Modeler with accurate 
modelling, simulation and analysis of wireless networks. The simulation model 
implements physical and medium access control layers defined in the IEEE 802.15.4-
2003 standard. The OPNET Modeler is used for developing, namely due to its accuracy 
and to its sophisticated graphical user interface.  

The actual version of the simulation model only supports the star topology where the 
communication is established between devices, called inside the model End Devices, and 
a single central controller, called PAN Coordinator. Each device operates in the network 
must have a unique address. 

There are two types of nodes inside the simulation model: 
 

− wpan_analyzer_node: This node captures global statistical data from whole 
PAN (one within PAN). 

− wpan_sensor_node: This node implements the IEEE 802.15.4-2003 standard 
as was mentioned above. 

 
The structure of the IEEE 802.15.4 sensor nodes (wpan_sensor_node) used in the 

simulation model is composed of four functional blocks (Figure 27): 
 
1.  The Physical Layer consists of a wireless radio transmitter (tx) and receiver 

(rx) compliant to the IEEE 802.15.4 specification, operating at the 2.4 GHz 
frequency band and a data rate equal to 250 kbps. The transmission power is set 
to 1 mW and the modulation technique is Quadrature Phase Shift Keying 
(QPSK). 

2.  The MAC Layer implements the slotted CSMA/CA and GTS mechanisms. The 
GTS data traffic (i.e. time-critical traffic) incoming from the application layer is 
stored in a buffer with a specified capacity and dispatched to the network when 
the corresponding GTS is active. The non time-critical data frames are stored in 
an unbounded buffer and based on the slotted CSMA/CA algorithm are 
transmitted to the network during the active CAP. This layer is also responsible 
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for generating beacon frames and synchronizing the network when a given node 
acts as PAN Coordinator. 

3.  The Application Layer consists of two data traffic generators (i.e. Traffic 
Source and GTS Traffic Source) and one Traffic Sink. The Traffic Source 
generates unacknowledged and acknowledged data frames transmitted during 
the CAP (uses slotted CSMA/CA). The GTS Traffic Source can produce 
unacknowledged or acknowledged time-critical data frames using the GTS 
mechanism. The Traffic Sink module receives frames forwarded from lower 
layers and performs the network statistics. 

4.  The Battery Module computes the consumed and the remaining energy levels. 
The default values of the current draws are set to those of the MICAz mote 
specification [25]. 

 
 

 
Figure 27 - The IEEE 802.15.4 [65] 

The actual version of the simulation model is 2.0 and is not backward-compatible to 
the previous version 1.0, meaning that the devices conforming to version 1.0 are not 
capable of joining and functioning in a PAN composed of devices conforming to version 
2.0 and vice-versa. The actual version 2.0 of the simulation model implements the 
following functions in accordance with the IEEE 802.15.4-2003 standard. 
 
Supported (implemented) features: 

− Beacon-enabled mode 
− Slotted CSMA/CA MAC protocol 
− Frame formats (beacon, command, ack, mac_packet) 
− Physical layer characteristics 
− Computation of the power consumption (MICAz and TelosB (TmoteSky) 
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− Guaranteed Time Slot (GTS) mechanism (GTS allocation, deallocation and 
reallocation functions) 

− Generation of the acknowledged and unacknowledged application data (MAC 
Frame payload = MSDU) transmitted during the Contention Access period 
(CAP) 

− Generation of the acknowledged or unacknowledged application data 
transmitted during the Contention Free Period (CFP) 

 
Non-supported features: 

− Non beacon-enabled mode 
− Unslotted CSMA/CA MAC protocol 
− PAN management (association/disassociation) 
− ZigBee Network Layer 
− The values of all constants and variables in this simulation model are 

considered for the 2.4 GHz frequency band with a data rate of 250 kbps, which 
is supported by the MICAz or TelosB motes, for example. In this case, one 
symbol corresponds to 4 bits. For other frequency bands and data rates it is 
necessary to change appropriate parameters inside the simulation model (e.g. 
the header file wpan_params.h). 

 
For more details about the Open-ZB OPNET simulation model, please refer to the 

technical report in [65]. 
  



 

 

Chapter 4  
On the Performance Evaluation of the IEEE 

802.15.4 Slotted CSMA/CA Mechanism 

This chapter addresses the performance evaluation of the Slotted 
CSMA/CA mechanism, both through an experimental testbed and 
through simulation. The analysis tries to assess the impact of the choice 
of Beacon Order (BO) and Backoff Exponent (BE), in the network 
performance, based in known metrics like the Probability of Successful 
Transmissions and Network Throughput as a function of the Offered 
Load. 

4.1 Introduction 
The IEEE 802.15.4 Slotted CSMA/CA mechanism was evaluated with the purpose of 
measuring its performance and the effectiveness of the available hardware platforms. 
Moreover, this analysis permits to identify the mechanism limitations and may trigger 
the proposal of improved schemes for specific purposes (e.g. reducing average delays, 
improving the throughput). 

The analysis was done for different network settings, in order to understand the 
impact of some protocol parameters on the network performance, namely in terms of 
Network Throughput (S) and Probability of Successful transmissions (Ps), given a 
certain Offered Load (G). These performance metrics are based on an extensive study of 
the Slotted CSMA/CA presented in [63]. 

The performance metrics analyzed in this work are the following. 
 
− Network Throughput (S). It is the fraction of traffic correctly received by the 

Network Analyzer, normalized by the network capacity of the IEEE 802.14.5 
Physical Layer (250 kbps). The S(G) analysis of CSMA-like mechanisms was 
first introduced in [64].  
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− Success probability (Ps). This metric is computed as S divided by Gmac, i.e. Ps 
= S / Gmac. It reflects the degree of reliability achieved by the network for 
successful transmissions. We denote by Ps(G) the success probability as a 
function of the offered load G. 

4.2 Experimental and Simulation Testbeds 
In order to accomplish this evaluation, an OPNET [42] simulation model [65] for the 
IEEE 802.15.4 supporting the slotted CSMA/CA mechanism was used as a means to 
compare experimental and simulation results, for the same scenarios.  

In general, both the simulation and experimental scenarios consist of 1 PAN 
Coordinator and ten End Devices generating traffic (data frames with 63 bytes of length) 
at pre-programmed inter-arrival times (at the Application Layer) and a network/protocol 
analyzer capturing all the data for later processing and analysis. We assume that the 
generated data frames have a constant size and are equal in all nodes.  

The global offered load (denoted as G) generated by all node's application layers 
depends on the inter-arrival times, which are exponentially distributed (Poisson arrivals). 
Basically, the performance of the slotted CSMA/CA mechanism will be evaluated as a 
function of the offered load G in the network. 

The simulation and the experimental scenarios are depicted in Figure 28 and Figure 
29, respectively. In Figure 28 is possible to observe the network layout and the attributes 
of each End Device node (wpan_sensor_node model).  

 

 
Figure 28 - Simulation Model setup 
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Figure 29 depicts the experimental testbed, using MICAz motes. In general, the 
hardware testbed consists of one Coordinator, ten end devices, one packet sniffer and 
one configuration node.  

The configuration node consists of a MICAz mote attached to a MIB510 [33] board 
which provides a serial interface to a computer. This node is used to setup the message 
inter-arrival times, frame size or any other network parameter of the traffic generating 
nodes thus providing a way of changing the nodes configuration without the need of 
reprogramming. This setting is done by simply sending a packet with all the network 
parameters values embedded in the payload at the beginning of each run, thus enabling 
the traffic generation of the end devices. In order to do this, a command is typed in the 
terminal window of a computer connected to the MIB510 serial interface. At that point, 
the end-devices already synchronized with the coordinator’s beacon, start transmitting 
data frames. The data frames were embedded with the necessary data in their payload to 
enable the analysis. 

The packet analyser used to capture all the generated packets was the Chipcon 
CC2420 Packet Analyser [37]. It generates a text file with all the received packets and 
the corresponding timestamps. A parser application was developed to retrieve the 
necessary data from the packet’s payload (by parsing the sniffer’s capture file) and 
export it to a spreadsheet for processing and result analysis. 

 

 
Figure 29 - The CSMA/CA performance evaluation test bed 

Both the simulation and experimentation scenarios conditions are considered 
identical. Nevertheless, it is reasonable to admit that the experimental results suffer from 
uncontrollable factors, such as RF interferences, processing limitations and memory 
constraints. Moreover, TinyOS also imposes some limitations that may impact in the 
network behaviour since it is not a real-time operating system as described in Chapter 7.  
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4.3 Performance Analysis 

4.3.1 BO and SO effect 
In this section the simulation and the experimental results are presented and briefly 
analysed.  

Setting BO and SO is one of the most important tasks of the PAN Coordinator. By 
changing the inter-arrival times, it was possible to achieve different traffic loads (G 
values). Figure 30 presents the results concerning Network Throughput (S) obtained 
through simulation (Figure 30 (a) ) and from the hardware testbed (Figure 30 (b) ), for 
different BO=SO settings). 
 
 

  
(a) (b) 

Figure 30 - Network Throughput for different BO 

As expected, with low SO settings we achieve lower Network Throughput. This is 
due to two factors. First, with lower SO settings the overhead of the beacon frame is 
much more significant since beacons are more frequent. Second, CCA deference is more 
frequent, which leads to more collisions at the start of each superframe. Increasing the 
superframe order above SO = 5 has very little effect in the Network Throughput, since 
the probability of deference is much lower, thus reducing the amount of collisions and 
leading to a higher S around 68 %. 

An example of the deference problem is illustrated in Figure 31, depicting a case 
with three nodes with the same superframe configurations.  

As depicted in Figure 31, if we consider greater superframe durations, node 3 can 
start its transmission before nodes 1 and 2 wake up. These latter nodes will then sense 
the channel busy (since node 3 is transmitting), and thus go to backoff with higher 
backoff delay value (after increasing BE).  

Therefore, the transmission deference problem is going to be more frequent with 
lower superframe orders, as the interval between superframes is lower. The probability 
of transmission deference is minimized with higher SO and when the nodes have 
different SO enabling the transmissions with less challengers trying to access the 
medium. As presented in Figure 30 (b), the same behaviour was observed with the 
experimental testbed, however the maximum S achieved was lower than in the 
simulation results (around 58 %). 
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Figure 31 - Transmission deference problem 

Figure 32 (a and b) compares the transmission Success Probability (Ps) and the 
offered load, for a given superframe order (SO). The results show that the probability of 
a successful transmission is quite low when offered load increases, and particularly 
lower for low SO due to the multiple collisions caused by deference as already 
explained.  

 

  
(a) (b) 

Figure 32 - Probability of Success for different BO  

The comparison between simulation and experimental results for two SO settings 
(SO=7 and SO=1) is presented in Figure 33.  
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Figure 33 - Experimental vs Simulation( BO=SO=7 and BO=SO=1) 

Notice, that although the results are similar (the behaviour predicted by the simulation 
results holds), there is a difference of approx 10% between simulation and experimental 
throughput results. We believe that this is mainly because the simulation model does not 
consider the physical constraints of the MICAz mote, especially the processing power, 
the TinyOS constraints and overheads and the normal interferences of a real wireless 
medium. 

4.3.2 Backoff exponent 
The backoff exponent (BE) is an important parameter in the backoff algorithm of slotted 
CSMA/CA. It enables the computation of the random backoff delay before trying to 
access the channel. The initial value of macMinBE is 3 but can be set in the range of [0, 
5]. Setting this value to 0 disables collision avoidance during the first iteration of the 
algorithm. 
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The purpose of this section is to study the impact of the initialization value 
macMinBE on network performance. We run the experiments (both in the simulator and 
in the hardware deployment), for different values of macMinBE - from 0 to 5. For each 
configuration, we vary the inter-arrival times of the packet generation in each node to 
have different offered loads with a constant packet size. Each curve corresponding to a 
given macMinBE is obtained for thirteen or more different inter-arrival times.  

As presented in Figure 34 the network throughput depends on the initialization value 
macMinBE, but, contrarily to what is expected, the network saturation throughput 
decreases when increasing the macMinBE. However, this does not mean a worse 
behavior for higher macMinBE. In fact, the macMinBE has an important influence on the 
amount of traffic sent to the network by the MAC sublayer (Gmac), as it is shown in 
Figure 35.  Figure 35 presents the offered load produced by the MAC sublayer (Gmac) 
as a function of the offered load of the application layer (G). The remaining part of the 
traffic is still queued waiting for service or dropped in case of limited buffer sizes like in 
the case of the hardware testbed. 

 

 

Figure 34 - Impact of macMinBE value in the Network  Throughput  

In a small-scale network with only ten nodes, the increase of macMinBE reduces the 
load effectively transmitted in the network. This is because high backoff delays will 
cause more wasted backoff periods not used by any of the competing nodes. This is 
explained by the small number of competing nodes in the network. As it is expected, 
increasing the backoff delay interval (starting with high macMinBE) results in a better 
success probability, while avoiding collisions in smallscale WSNs. Most of the traffic 
sent is correctly received for high macMinBEs. 

 



Chapter 4 – On the Performance Evaluation of the   
IEEE 802.15.4 Slotted CSMA/CA Mechanism 

 

 

68 

 
 

(a) (b) 

Figure 35 - Offered Load for different macMinBE values 

Again, the amount of traffic sent in the case of the experimental testbed (Figure 35 
(b)) is approximately 20% lower than the one represented in simulation (Figure 35 (a)). 
We believe this is in fact the cause for the lower throughput verified in the previous 
experiments. The hardware platforms are unable to transmit such a high amount of 
traffic thus resulting in lower throughputs.  

4.4 Concluding remarks 
Simulation and experimental results allowed observing similar behaviours, which 
consolidates the consistency of the implemented version of the Slotted CSMA/CA 
mechanism and of the IEEE 802.15.4 protocol in general.  

As it could be expected, the simulation results for Throughtput and Probability of 
Success are higher that the experimental results. We believe that this is mainly because 
the simulation model does not consider some of the physical constraints of the MICAz 
mote, especially the processing power, the internal delays due to TinyOS overheads and 
the normal interferences of a real wireless medium. 

Considering the exemplifying case of the experiment where SO = BO = 7, Figure 33 
depicts the Throughput and the Success Probability curves for different network loads. 
In this figure, it is possible to observe that the simulation and experimental curves have 
the same behaviour. One of the reasons for a lower performance with lower SO is due to 
a more probability of transmission deference (e.g. number of frames that were deferred 
to the next superframe because the device could not send them in the current one). The 
transmission deference problem is more frequent with lower Superframe Orders (SO) as 
the Superframe Duration is smaller. Another factor for the lower performance is the 
overhead of the beacon frame transmission, which is more significant in lower SO 
values.Regarding the macMinBE setting, it has an important influence on the amount of 
traffic sent to the network by the MAC sublayer (Gmac). In a small-scale network with 
only ten nodes, the increase of macMinBE reduces the load effectively transmitted in the 
network, which has a positive impact on the success probability (S/Gmac) for small-
scale WSNs. Therefore, most of the traffic sent is correctly received for high 
macMinBEs.  



 

 

Chapter 5  
On a Hidden-Node Avoidance Mechanism 

This chapter describes H-NAMe, a simple yet efficient distributed 
mechanism to overcome the hidden-node problem. H-NAMe relies on a 
grouping strategy that splits each cluster of a WSN into disjoint groups 
of non-hidden nodes and then scales to multiple clusters via a cluster 
grouping strategy that guarantees no transmission interference between 
overlapping clusters. The feasibility of H-NAMe is demonstrated via an 
experimental test-bed, showing that it increases network throughput 
and transmission success probability up to twice the values obtained 
without H-NAMe. 

5.1 Introduction 
The hidden-node problem has been shown to be a major source of Quality-of-Service 
(QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the 
limited communication range of sensor nodes, link asymmetry and the characteristics of 
the physical environment. In wireless contention-based Medium Access Control 
protocols, if two nodes that are not visible to each other transmit to a third node that is 
visible to the formers, there will be a collision as illustrated in Figure 36 – usually called 
hidden-node or blind collision.  

This problem leads to the degradation of the following three performance metrics.  

1. Throughput, which denotes the amount of traffic successfully received by a 
destination node and that decreases due to additional blind collisions.  

2. Energy-efficiency that decreases since each collision causes a new retransmission. 

3. Transfer delay, which represents the time duration from the generation of a 
message until its correct reception by the destination node, and that becomes 
larger due to the multiple retransmissions of a collided message. 
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Figure 36 - A hidden-node collision  

Figure 37 presents an example obtained with our OPNET [42] simulation model [65] 
for the IEEE 802.15.4 protocol, just to highlight the negative impact of the hidden-node 
problem. We considered a star network spanning on a square surface (100x100 m2) with 
100 nodes, where traffic generation followed a Poisson distribution. The throughput is 
shown for different transmission ranges of the nodes. We vary the transmission range of 
the nodes by setting different receiver sensitivity levels. The degradation of the 
throughput performance due to hidden-node collisions is clearly noticeable in Figure 37. 
This is due to the increase of the hidden-node collision probability when decreasing the 
transmission range.  

 
Figure 37 - Hidden-node impact on network throughpu t 

In the literature, several mechanisms have been proposed to resolve or mitigate the 
impact of the hidden-node problem in wireless networks. A thorough enumeration of 
these techniques is available at [14].  
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These techniques can be categorized as follows: 
 

− The busy tone mechanism, [67], [68] and [69]; 
− RTS/CTS mechanism, [70], [71], [72] and [73]; 
− Carrier Sense Tuning, [74], [75] and [76]; 
− Node Grouping [77]; 

 
However, to our best knowledge, no effective solution to this problem in WSNs was 

proposed so far. 
This Chapter presents an efficient solution to the hidden-node problem in 

synchronized cluster-based WSNs. Our approach is called H-NAMe and is based on a 
grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden 
nodes. It then scales to multiple clusters via a cluster grouping strategy that guarantees 
no transmission interference between overlapping clusters.  

The recently standardized IEEE 802.15.4/ZigBee protocol stack, which is considered 
as a promising candidate for WSNs (e.g. [66]), supports no hidden-node avoidance 
mechanism. This leads to a significant QoS degradation as already seen in Figure 37. 
The resolution of this problem is of paramount importance for improving reliability, 
throughput and energy-efficiency. In this line, we show the integration of the H-NAMe 
mechanism in the IEEE 802.15.4/ZigBee protocols, requiring only minor add-ons and 
ensuring backward compatibility with their standard specifications. We developed an 
experimental test-bed and carried out a significant number of experiments showing that 
H-NAMe increases network throughput and transmission success probability up to 
100%, against the native IEEE 802.15.4 protocol.  

We believe that the integration of the H-NAMe mechanism in IEEE 802.15.4/ZigBee 
may be relevant in leveraging the use of these protocols in WSNs and in enriching future 
versions of their specifications. 

5.2 The H-NAMe mechanism  

5.2.1 System model  
We consider a multiple cluster wireless network and we assume that in each cluster there 
is at least one node with bi-directional radio connectivity with all the other cluster nodes 
(Figure 38). We denote this node as Cluster-Head (CH). At least the CH must support 
routing capabilities, for guaranteeing total interconnectivity between cluster nodes.  

Nodes are assumed to contend for medium access during a Contention Access Period 
(CAP), using a contention-based MAC (e.g. CSMA family). A synchronization service 
must exist to assure synchronization services to all network nodes, either in a centralized 
(e.g. GPS, RF pulse) or distributed fashion (e.g. IEEE 802.11 TSF, ZigBee). We also 
assume that there is interconnectivity between all network clusters (e.g. mesh or tree-like 
topology). 
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Figure 38 - Network model 

Note that although our current aim is to use the H-NAMe mechanism in the IEEE 
802.15.4/ZigBee protocols, the system model is generic enough to enable the application 
of H-NAMe to other wireless communication protocols (e.g. IEEE 802.11). 

5.2.2 Intra-cluster grouping 
Initially, all nodes in each cluster share the same CAP, thus are prone to hidden-node 
collisions. The H-NAMe mechanism subdivides each cluster into node groups (where all 
nodes have bi-directional connectivity) and assigns a different time window to each 
group during the CAP. The set of time windows assigned to node group transmissions is 
defined as Group Access Period (GAP), and must be smaller or equal to the CAP. In this 
way, nodes belonging to groups can transmit without the risk of hidden-node collisions.  

For the intra-cluster grouping mechanism, we start by assuming that there is no 
interference with adjacent clusters, since that might also instigate hidden-node collisions. 

The H-NAMe intra-cluster grouping strategy comprises four steps, presented 
hereafter and illustrated in Figure 39. 
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Figure 39 - Intra-cluster grouping mechanism  

A message sequence diagram is presented in Figure 40. 

 

Figure 40 - Intra-cluster grouping message sequence  chart 
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Step 1 - Group Join Request 
Let us consider a node Ni that wants to avoid hidden-node collisions. Node Ni sends a 
Group-join.request message to its cluster-head CH, using a specific broadcast address 
referred to as group management address @GM in the destination address field. @GM is 
defined as an intra-cluster broadcast address, which must be acknowledged by the 
cluster-head (in contrast to the typical broadcast address). Obviously, the 
acknowledgment message (ACK) will be received by all cluster nodes, since the cluster-
head is assumed to have bi-directional links with all of them. 
Such an acknowledged broadcast transmission ensures that the broadcasted message is 
correctly received by all the neighbors of the broadcasting node (recalling that we 
assume no inter-cluster interference). In fact, if any collision occurs inside the cluster 
during the transmission of the broadcast message, then the cluster-head CH will certainly 
be affected by this collision since it is in direct visibility with all nodes in its cluster. If 
no collision occurs, then the broadcast message will be correctly received by all nodes 
and acknowledged by the cluster-head.  
Hence, since the Group-join.request message is sent using the group management 
address @GM, CH sends back an ACK frame to Ni notifying it of the correct reception of 
the group join request. 
On the other side, all cluster nodes in the transmission range of Ni (thus received the 
Group-join.request message) and that already belong to a group, check if they have Ni 
already registered as a neighbor node in their Neighbor Table. We assume that the 
Neighbor Table is created and updated by each node during network set-up and run-time 
phases. The Neighbor Table stores the addresses of neighbor nodes and the link 
symmetry information, which specifies if the link with a corresponding neighbor is bi-
directional or not. If a node hears the Group-join.request message and does not belong to 
any group (it is transmitting in the CAP, thus not in the GAP), then it simply ignores the 
message. On the other hand, if a node Nj is already in a group and hears the join 
message, then it records the information about Ni in its Neighbor Table, if it is not 
registered yet, and will update the link symmetry with direction Ni→Nj.  

Step Status. At the end of this step, each node in the transmission range of Ni knows 
that node Ni is asking for joining a group and registers the neighborhood information of 
Ni. This only ensures a link direction from Ni to this set of nodes. The link symmetry 
verification is the purpose of the next step.  

Step 2 - Neighbor Notification 
After receiving the ACK frame of its Group-join.request message, node Ni triggers the 
aGroupRequestTimer timer, during which it waits for neighbor notification messages 
from its neighbors that heard its request to join a group and that already belong to a 
group. Choosing the optimal duration of this timer is out of the scope of this Thesis, but 
it must be large enough to permit all neighbors to send their notification. 

During that time period, all nodes that have heard the join request and that already 
belong to a group must initiate a Neighbor.notify message to inform node Ni that they 
have heard its request. One option is that a node Nj directly sends the Neighbor.notify 
message to node Ni with an acknowledgement request. The drawback of this alternative 
is that node Nj cannot know when its Neighbor.notify message fails to reach Ni (i.e. ACK 
frame not received), whether the lost message is due a collision or to the non-visibility of 
Ni. No clear decision can be taken in that case. A better alternative is that node Nj sends 
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the Neighbor.notify message using the group management address @GM in the 
destination address field. As previously mentioned, the correct reception of the 
Neighbor.notify message by the cluster-head CH followed by an ACK frame means that 
this message is not corrupted by any collision and is correctly received by all nodes in 
the transmission range of Nj. Particularly, node Ni will correctly receive the neighbor 
notification message if it is reachable from node Nj; otherwise, the link between Ni and 
Nj is unidirectional (direction Ni→Nj). If Ni receives the Neighbor.notify message from 
Nj, then it updates its Neighbor Table by adding as a new entry the information on Nj 
with Link Symmetry set to bi-directional (Ni↔Nj), if this information has not been 
recorded yet. If Nj has already been registered as a neighbor node, Ni must be sure to set 
the Link Symmetry property to bi-directional. This procedure is executed by all nodes 
responding to the Group-join.request message during the timer period 
aGroupRequestTimer.  

Step Status. At the end of this step, the requesting node Ni will have the information 
on all bi-directional neighbors that have already been assigned to groups. Since Ni does 
not know the number of nodes in each group, it cannot decide alone which group it will 
join. The group assignment is the purpose of the next steps.  

Step 3 – Neighbor Information Report 
The cluster-head CH is assumed to be the central node that manages all the groups in 

its cluster. Thus, CH has a full knowledge of the groups and their organization. For that 
reason, after the expiration of the aGroupRequestTimer timer, node Ni sends the 
Neighbor.report message, which contains the list of its neighbor nodes (that have been 
collected during the previous step), to its cluster-head CH (using the CH address @CH as 
a destination address). The CH must send back an ACK frame to confirm the reception. 
Then, node Ni waits for a notification from CH that decides whether Ni will be assigned 
to a group or not. CH must send the group assignment notification before the expiration 
of a time period equal to aGroupNotificationTimer. If the timer expires, node Ni 
concludes that its group join request has failed and may retry to join a group later.  

Step Status. At the end of this step, Ni will be waiting for the group assignment 
confirmation message from CH, which tries to assign Ni to a group based on its neighbor 
information report and the organization of the groups in its cluster. The group 
assignment procedure and notification is presented in the next step.  

Step 4 - Group Assignment Procedure 
The cluster-head CH maintains the list of existing groups. After receiving from node Ni 
the Neighbor.report message containing the list of its bi-directional neighbors, CH starts 
the group assignment procedure to potentially assign Ni to a given group, according to its 
neighborhood list and available resources. In each cluster, the number of groups must be 
kept as low as possible in order to reduce the number of state information that needs to 
be managed by the CH. 

In each cluster, the number of groups must be kept as low as possible. The authors in 
[77] showed that, with the assumption of a circular radio range and a bi-directional link 
between any two nodes that are visible to each other in the cluster, the maximum number 
of groups does not exceed five. However, it can be easily seen in Figure 41, that the 
maximum number of groups with such a condition does not exceed six. This is simply 
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because the area of the circular range of the cluster head can be decomposed into six 
equal regions defined by isosceles triangles. The maximum distance between two points 
into the same region is always lower than or equal to the radius of the circle. 

  

Figure 41 - Maximum number of groups in a cluster a ssuming bi-directional links and 
circular radio range 

Note that without the assumption of a bi-directional link between each couple of 
nodes inside a cluster, the maximum number of groups cannot be controlled in case of 
asymmetric links due to the presence of obstacles or different transmission ranges of 
different nodes in the cluster. Here, we consider the case of asymmetric links since it is 
more realistic. We impose that the number of groups inside each cluster must not exceed 
aMaxGroupNumber, which should be equal to six by default. This parameter can be set 
differently by the cluster head CH.  

The group assignment algorithm is presented in Figure 42. 
Upon reception of the Neighbor.report message, the cluster-head CH checks the 
neighbor list of the requesting node Ni. If there is a group whose (all) nodes are 
neighbors of node Ni, then Ni will be associated to that group. The cluster-head runs the 
following algorithm (as in Fig. 7). For each neighbor node Nj in the list, the cluster-head 
CH increments Count [group_index (Nj)], which denotes the number of neighbor nodes 
of Ni that belong to the group of the currently selected neighbor Nj. Note that     
group_index (Nj) denotes the index of the group of node Nj. If this number is equal to the 
actual number of nodes of the latter group, it results that all nodes in this group are 
neighbors of node Ni. Thus, Ni can be assigned to this group since it is visible to all its 
nodes. If the list of neighbors is run through without satisfying such a condition, the 
cluster-head CH will create a new group for Ni if the number of groups is lower than 
aMaxGroupNumber; otherwise, the Group-join.request message of Ni will be considered 
as failed. So it must transmit during the CAP (not in the GAP), and may retry a new 
group join request later. 

At the end of the group assignment process, CH sends a Group-join.notify message to 
node Ni to notify it about the result of its group join request.  

If the requesting node is assigned a group, then it will be allowed to contend for 
medium access during the time period reserved for the group, which is called Group 
Access Period (GAP). This information on the time period allocated to the group is 
retrieved in the subsequent frames sent by CH.  
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 Group Assignment Algorithm 
1 int  aMaxGroupNumber;  // maximum number of groups  

2                                          in a cluster 

3 Type Group;   

4 Group G;           // list of all groups G[1]..G[aMaxGroupNumber] 

5 |G[i]| = number of elements in group G[i] 

6 Type Neighbor_List;       // {Np .. Nq)= Neighbor List of      

7                                           the requesting Node N 

8 int  Count [|G[i]|] = {0, 0, .., 0};   // Number of nodes in Neighbor  

9                                                   List that belongs to the group G[i] 

10 int  grp_nbr;    // the current number of groups managed by CH 

11 // group_index function returns the group index of the node NL[i] 

12 function int  group_index(Neighbor_List NL, int  i)                                                   

13 //the group assignment function.  

14 int  group_assign (Neighbor_List NL, Group G, int  grp_nbr) { 

15     int  res = 0; 

16     int  index = 0; 

17     while ((res = = 0) and (index < |NL|)) { 

18           if  (++Count[group_index (NL, index)] = =  

19                                           |G[group_index (NL, index++])|) 

20                res = group_index (NL, --index); break; 

21     } 

22     if  (res = = 0) {    //that means that no group is found 

23           if  (grp_nbr = = aMaxGroupNumber) return  (res) 

24                 else return (++grp_nbr); 

25     } 

26   else return  (res); 

27 }  

Figure 42 - Group assignment algorithm 

Importantly, the complexity of the algorithm for assigning a group to a node depends 
on the number of neighbours of this node. In any case, it is smaller than O(N), where N 
is the number of nodes in the cluster, thus has significantly lower complexity than the 
O(N²) complexity of the algorithm for group assignment proposed in [77]. Moreover, in 
that proposal each new node that enters the network is unaware of the existing groups 
and will cause a hidden-node collision, after which the groups are re-constructed. In our 
mechanism, a node is not allowed to transmit during the time period allocated to groups 
(only being able to communicate during the CAP) until it is assigned to a given group. 

Group load-balancing: Note that the algorithm presented in Figure 42 stops when a 
first group of non-hidden nodes is found for the requesting node. However, a requesting 
node can be in the range of two different groups, i.e. all nodes in two separate groups are 
visible to the requesting node. In this case, one possible criterion is to insert the 
requesting node into the group with the smallest number of nodes, for maintaining load-
balancing between the different groups. For that purpose, the algorithm should go 
through all the elements of the neighbour list and determine the list of groups that satisfy 
the condition in lines 18 and 19 of the algorithm (Figure 42). In this case, if more than 
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one group satisfies this condition, Ni will be inserted in the group with the smallest 
number of nodes.  

Bandwidth allocation: The time-duration of each group in the GAP can be tuned by 
the cluster-head to improve the mechanism efficiency. This can be done according to 
different strategies, namely: (i) evenly for all the node groups; (ii) proportionally to the 
number of nodes in each group; (iii) proportionally to each group’s traffic requirements. 
How to perform this assignment is not tackled in this Thesis. 

5.2.3 Scaling H-NAMe to multiple-cluster networks 
Solving the hidden-node problem in multiple-cluster networks involves greater 
complexity due to inter-cluster interference. The assumption that there is no interference 
from other clusters made before is no longer valid. Hence, even if non-hidden node 
groups are formed inside all clusters, there is no guarantee that hidden-node collisions 
will not occur, since groups in one cluster are unaware of groups in adjacent clusters.  

Obviously, the best strategy for completely avoiding the inter-cluster hidden-node 
problem is to reserve an exclusive time window for each cluster. However, this strategy 
is definitely not adequate for large-scale sensor networks, where the number of 
clusters/groups is significantly high. 

Our approach consists in defining another level of grouping by creating distinct 
groups of clusters, whose nodes are allowed to communicate during the same time 
window. Therefore, each cluster group will be assigned a portion of time, during which 
each cluster in the cluster group will manage its own Group Access Period (GAP), 
according to the intra-cluster mechanism presented in Section 5.2.2.  

The cluster grouping concept is illustrated in Figure 38. As shown, clusters A and B 
have overlapping radio coverage, which can lead to inter-cluster interference and thus to 
hidden-node collisions. For this reason, they will be assigned to different cluster groups 
that are active in different time windows. The same applies for cluster pairs (C, D), (A, 
C) and (B, D). Therefore, our cluster grouping mechanism forms two cluster groups: 
Group 1, which comprises clusters A and D, and Group 2, containing clusters B and C. 

The challenge is on finding the optimal cluster grouping strategy that ensures the 
minimum number of cluster groups. We define a cluster group as a set of clusters whose 
nodes are allowed to transmit at the same time without interference. 

Cluster grouping and time window scheduling strategies were proposed and 
effectively implemented and validated in [78], for engineering ZigBee cluster-tree 
WSNs. We propose a grouping criterion and a graph colouring algorithm for an efficient 
scheduling of the cluster groups activity. 

5.3 H-NAMe in IEEE 802.15.4/ZigBee  
In this section, we explain how to instantiate the H-NAMe mechanism to the IEEE 
802.15.4 protocol, namely addressing beacon-enabled cluster-tree networks. This 
topology is scalable and enables energy-efficient (dynamically adaptable duty-cycles per 
cluster) and real-time communications. In addition, the cluster-tree topology fits into the 
H-NAMe network model.  

Basically, the idea is that each node group (resulting from the H-NAMe mechanism) 
will be allocated a time window in each superframe duration. The idea is to use part of 
the CAP for the Group Access Period (GAP), as illustrated in Figure 43. Note that a 



Chapter 5 – On a Hidden-Node Avoidance Mechanism 
 

 
 

79 

minimum duration of 440 symbols must be guaranteed for the CAP in each superframe 
[24]. 

 
Figure 43 - CAP, GAP and CFP in the Superframe  

In our intra-cluster grouping strategy, a node that has been assigned a group will track 
the beacon frame for information related to the time window allocated to its group, and 
will contend for medium access during that period with the other nodes of the same 
group. We propose the GAP Specification field in Figure 44 to be embedded in the 
beacon frame (such a specification is missing in [77]). 

 
Figure 44 - GAP specification field of a beacon fra me  

The GAP is specified by the Group ID field that identifies the node group. Up to 8 
groups per cluster can be defined. The time window in the superframe is specified by a 
given number of Backoff Periods (BP). A practical problem is that the number of a 
backoff period in a superframe may be quite large for high superframe orders (up to 16 
time slots * 216 BP/time slot), which requires a huge amount of bits in the field to 
express the starting BP and the final BP for each group. The objective is to maintain as 
low overhead as possible for the specification of a given group. For that purpose, a group 
is characterized by its start time slot and end time slot (between 0 and 15) and the 
corresponding backoff period offsets. The start and end offsets for the time duration of a 
group is computed as follows: 

 (Start/End) Backoff Period Offset * 2SORelative Offset=  
The choice of a Backoff Period Offset sub-field encoded in two bits is argued by the 

fact that the minimum number of backoff periods in a time slot is equal to 3 for (SO = 0). 
Hence, for SO > 0, each time slot will be divided into three parts to which the start/end 
instant of a given group access period should be synchronized.  

This GAP implementation approach only requires two bytes of overhead per group. 
The maximum number of groups depends on the SO values, since lower superframe 
orders cannot support many overhead in the beacon frame due their short superframe 
durations. Also, it allows a flexible and dynamic allocation of the groups, since all nodes 
continuously update their information about their group start and end times when 
receiving a beacon frame, at the beginning of each superframe. 
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5.4 Experimental Evaluation 

5.4.1 Implementation approach 
We have implemented the H-NAMe mechanism in nesC/TinyOS [43], over the Open-
ZB implementation [62] of the IEEE 802.15.4/ZigBee protocols, to demonstrate its 
feasibility and efficiency using commercial-off-the-shelf (COTS) technologies. 

For that purpose, we carried out a thorough experimental analysis to understand the 
impact of the H-NAMe mechanism on the network performance, namely in terms of 
network throughput (S) and probability of successful transmissions (Ps), for different 
offered loads (G), in one cluster with a star-based topology. Both metrics have been also 
used to evaluate the performance of the Slotted CSMA/CA MAC protocol in Chapter 4. 
The network throughput (S) represents the fraction of traffic correctly received 
normalized to the overall capacity of the network (250 kbps). The success probability 
(Ps) reflects the degree of reliability achieved by the network for successful 
transmissions. This metric is computed as the throughput S divided by G, representing 
the amount of traffic sent from the application layer to the MAC sub-layer, also 
normalized to the overall network capacity. 

To have a clearer idea on the impact of the hidden-node phenomenon independently 
from other parameters, we have chosen a superframe order sufficiently high (SO = 8) to 
avoid the collisions related to the CCA deference problem encountered for low SO, in 
the slotted CSMA-CA mechanism, as presented in [63] and in Chapter 4 of this Thesis. 
The CCA deference problem occurs when it is not possible for a frame to be transmitted 
in the remaining space of the superframe and its transmission must be deferred to the 
next one. For low SO and due to the lower superframe duration, it is more probable that 
this deference occurs (in more nodes), resulting in multiple collisions at the beginning of 
the next superframe. The reason is that, after the deference, the slotted CSMA-CA 
protocol does not perform another backoff procedure (only two CCAs).  

5.4.2 Test-bed scenario 
The experimental test-bed consisted of 18 MICAz motes [25] (featuring an Atmel 
ATmega128L 8-bit microcontroller with 128 kB of in-system programmable memory) 
scattered in three groups hidden from each other, a ZC and a protocol analyzer Chipcon 
CC2420 [37], capturing the traffic for processing and analysis (Figure 45).  

The protocol analyzer generates a log file containing all the received packets and the 
corresponding timestamps, enabling to retrieve all the necessary data embedded in the 
packets payload, using a parser application we developed, presented in Chapter 4.  

The 18 nodes have been programmed to generate traffic at the application layer with 
preset inter-arrival times. A similar approach has previously been used in Chapter 4, for 
evaluating the performance of the CSMA-CA protocol. The three node groups were 
placed at ground level near walls, in order to reinforce the hidden-node effect (Figure 
45). To ensure that nodes in different groups were in fact hidden, a simple test was 
carried out.  
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Figure 45 - Experimental testbed 

A MICAz mote was programmed to continuously perform the clear channel 
assessment procedure, toggling a led when energy was detected in the channel. By 
placing this mote at different spots while a group of nodes was transmitting, we were 
able to identify an area to place a new node group so that they would be hidden from the 
other groups. This procedure was repeated for each group, in a way that nodes were 
divided evenly by the 3 groups (6 nodes/group). 

5.4.3 Experimental results 
Figure 46 presents the GAP created by the H-NAMe mechanism. 

 

Figure 46 - Groups allocation in the superframe  

Each node group was assigned with four time slots for transmission, which represents 
a theoretical duration of 983.04 ms per group (SO = 8). This allocation was made 
according to the principle of equal group access duration for an equal number of nodes 
per group. 

5.4.4 The node group-join procedure 

Figure 47 illustrates a packet capture of a group join requested by a node. In this 
example, a node with short address 0x0006 (see Figure 47) requested to join a group. 
Notice the beacon payload featuring the GAP specification of the groups already formed 
(labeled (1) in Figure 47).  
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The node initiated the process by sending a Group-join.request message to the ZC 
(label (2)) and receiving an acknowledgement. Then, all the other nodes in its 
transmission range replied with a Neighbor.notify message (label (3)). When the 
requesting node receives these messages, it knows that it shares a bi-directional link with 
its neighbors. As soon as the timer for receiving Neighbor.notify messages expires, the 
requesting node sends a Neighbor.report message to the ZC identifying its neighbors 
(label (4)). The ZC runs the H-NAMe intra-cluster grouping algorithm to assign a group 
to that node and sends a Group-join.confirm message, notifying the node of which group 
to join (label (5)). The node, now assigned to Group 1, can transmit during the GAP 
portion reserved for Group 1 (see Figure 46).  

Figure 47 - Packet analyzer capture of a group join  

5.4.5 H-NAMe performance evaluation 
The performance evaluation of the H-NAMe mechanism has been carried out using BO 
= SO = 8 (100% duty cycle), with a constant frame size of 904 bits. Several runs were 
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performed (one for each packet inter-arrival time), to evaluate the network performance 
at different offered loads (G).  

presents the throughput (S) and the success probability (Ps) obtained from 
three experimental scenarios: a network with hidden-nodes without using the H
mechanism (triangle markers curve); the previous network using the H
mechanism (circle markers curve) and a network without hidden-nodes (square markers 
curve). The depicted average values for the throughput and probability of success were 
computed with a 95% confidence interval for a sample size of 3000 packets at each 
offered load. The respective variance is displayed at each sample point by a vertical bar 
in black. From these results, we can observe that even at low offered loads H
leads to a considerable performance improvement. For instance, for an offered load (
of 30%, the success probability (Ps) using H-NAMe is roughly 50% greater than without 

 
Figure 48 - Experimental performance results 
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Considering higher loads, it is clear that the H-NAMe doubled the throughput of the 
conventional network with hidden-nodes. At 90% of offered load (G), the throughput of 
the network using H-NAMe reached 67% and is increasing, while without using H-
NAMe a saturation throughput of 32% is achieved, representing an improvement of 
more than 100%. 

Moreover, it is possible to observe that for high offered loads, the H-NAMe 
mechanism has actually up to 5% better throughput performance than that of a network 
without hidden-nodes. This results from the lower probability of collisions with H-
NAMe since at most 6 nodes (one group) contend for the medium at a given time (GAP) 
instead of 18 nodes in the network without H-NAMe intra-cluster grouping. 

In this experimental scenario, there were no packets retransmitted (due to collisions). 
However, if we consider one retransmission for each lost packet, the increase in the 
number of transmissions would be significant in the case of the network without H-
NAMe, thus leading to a much higher energy loss, even at low offered loads. Notice that 
for G = 30%, Ps is around 50% when  H-NAMe is not used, meaning that half of the 
packets transmitted did not reach their destination. 

In conclusion, it can be noticed that the H-NAMe mechanism presents a significant 
improvement of the network performance in terms of throughput and success 
probability, at the small cost of some additional overhead to setup the different groups in 
the networks. 

5.5 Concluding remarks 
In this chapter, we have described a solution to a real fundamental problem in Wireless 
Sensor Networks (WSNs) that use contention-based medium access control (MAC) – the 
hidden-node problem.  

We have proposed a simple yet very effective mechanism – H-NAMe – that 
eliminates hidden-node collisions in synchronized multiple cluster WSNs, leading to 
improved network throughput, energy-efficiency and message transfer delays. H-NAMe 
follows a proactive approach (avoids hidden-node collisions before occurring) for 
achieving interference-free node and cluster groups.  

We have also showed how H-NAMe can easily be applied to the IEEE 
802.15.4/ZigBee protocols, which are prominent candidates for WSN applications. 
Finally, we have implemented, tested, validated and demonstrated the feasibility and 
effectiveness of the H-NAMe mechanism in a real scenario, reaching a network 
performance improvement at the order of 100%. 
  



 

 

Chapter 6  
Real-Time Communications over Cluster-Tree 

Wireless Sensor Networks  

 
Modelling the fundamental performance limits of Wireless Sensor 
Networks (WSNs) is of paramount importance to understand the 
behaviour of WSN under worst-case conditions and to make the 
appropriate design choices. This chapter focuses on the experimental 
test and validation of a methodology for modelling cluster-tree WSNs 
where the sink can be static or mobile. Worst-case end-to-end delays, 
buffering and bandwidth requirements across any source-destination 
path in the network are compared to the experimental (maximum, 
average) results. 

6.1 Introduction 
Wireless Sensor Networks (WSNs) emerge as enabling infrastructures for large-scale 
distributed embedded systems. Timeliness is an important requirement to be fulfilled in 
these systems. However, issues such as large scale and communication, computing and 
energy limitations pose important difficulties in guaranteeing a correct behaviour of 
these systems.  

Evaluating the performance limits of WSNs is therefore a crucial task, particularly 
when the network is expected to operate under worst-case conditions [80], [81]. For 
achieving real-time communications over sensor networks, it is mandatory to rely on 
deterministic routing and MAC (Medium Access Control) protocols. Usually, these 
networks use hierarchical logical topologies such as cluster-tree or hexagonal (e.g. [82], 
[83]). Issues such as the use of contention-free MAC protocols (e.g. time division or 
token passing) and the possibility of performing end-to-end resource reservation contrast 
with what can be achieved in mesh-like topologies, where contention-based MACs and 
probabilistic routing protocols are used. 



Chapter 6 – Real-Time Communications over  
Cluster-Tree Wireless Sensor Networks 

 

 

86 

In a previous work [79], the authors have provided a methodology and closed-form 
expressions to dimension the network resources in a cluster-tree WSN with a static sink. 
The sink – a central point that collects all sensory data – was assumed to be statically 
attached to the root. That work aimed at evaluating the worst-case network performance 
assuming a cluster-tree topology of balanced height and load. This symmetry property 
was explored to derive per-hop and end-to-end resource requirements in addition to the 
worst-case delays of upstream flows (i.e. from child nodes to the root). 

However, while the static sink behaviour is adequate for root-centric WSN 
applications (e.g. a surveillance system delivering alarms to a central station), other 
applications may impose or benefit from collecting data at different network locations 
(e.g. a doctor with a hand-held computer collecting patients’ status).  

This chapter presents the experimental validation of a theoretical model that permit 
the worst-case dimensioning and analysis of cluster-tree WSNs, based in Network 
Calculus, by comparing worst-case results (buffer requirements and message end-to-end 
delays) with the maximum and average values measured through an experimental 
test-bed based on real COTS technologies. 

6.2 Background on Network Calculus 
Network Calculus [84] is a mathematical methodology based on min-plus algebra that 
applies to the deterministic analysis of queuing/flows in the networks. This section 
briefly introduces the aspects that are most significant to this work. For additional details 
please refer to [84]. 

A basic system model S in Network Calculus consists of a buffered FIFO node with 
the corresponding transmission link (Figure 49).  

 
Figure 49 -The basic system model of Network Calcul us 

For a given data flow, the input function R(t) is a cumulative number of bits that have 
arrived to system S in the time interval (0, t). The output function R*(t) is the number of 
bits that have left S in the same interval (0, t). An arrival curve α (t) upper bounds the 
input function of a system S such that for ∀s, 0 ≤ s ≤ t, R(t) - R(s) ≤ α (t - s). A service 
curve β (t) represents a lower bound on the transmitted cumulated flow, thus for ∀t there 
exists t0 ≤ t such that R*(t) - R*(t0) ≥ β (t -t0). The knowledge of the arrival and service 
curves enables us to determine performance bounds, namely the delay bound Dmax given 
by the maximum horizontal distance between α (t) and β (t), which represents the 
worst-case delay of the message traversing system S, and the backlog bound Qmax given 
by the maximum vertical distance between α (t) and β (t), which represents the 
minimum buffer size requires inside S. These concepts are illustrated in Figure 50. 
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Figure 50 - Example of input R(t) and output R*(t) functions constrained by (b, r) 
arrival curve α(t) and rate-latency service curve β(t), respectively. 

So far, we have handled a system S as a single buffered node. However, system S 
might be also a sequence of nodes or even a complete network. If so, the concatenation 
theorem enables to investigate systems in sequence as a single system. This theorem is 
described in more detail in [16]. 

The accuracy of the worst-case bounds depends on how tightly the selected arrival 
and service curves follow the real network behaviour. Different types of arrival and 
service curves have been proposed in Network Calculus . However, the (b, r) arrival 
curve and rate-latency service curve are the most used in such network models. The (b, 
r) arrival curve is defined as α (t) = b + r·t for ∀t > 0, where b is called burst tolerance, 
which is the maximum number of bits that can arrive simultaneously at a given time to 
the system S and r is the average data rate. The rate-latency service curve is defined as 
βR,T (t) = R·(t-T)+, where R ≥ r is the guaranteed link bandwidth, T is the maximum 
latency of the service, and (x)+ = max(0, x). These curves lead to a fair trade-off between 
computing complexity and approximation accuracy of the real system behaviour, as it 
will be seen throughout the rest of the paper. 

Hereafter, we consider a data flow constrained by the (b, r) arrival curve α (t) and 
traversing system S with a rate-latency service curve βR,T (t). Then, the guaranteed 
performance bounds Dmax and Qmax (see Figure 50 for additional intuition) are easily 
computed as: 

���� = �
� + 	 


��� = � + � ∙ 	 (6.1) 

6.3 System Model 
This section defines the cluster-tree topology and data flow models that will be 
considered in the analysis. It also elaborates on the worst-case cluster scheduling; that is, 
the time sequence of clusters’ active periods leading to the worst-case end-to-end delay 
for a message to be routed to the sink. 

arriv
al curve 

α(t) 
= b+rt

α*(t)
 = (b

+rT)+rt
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6.3.1 Cluster-tree topology model 
Cluster-tree WSNs feature a tree-based logical topology, where nodes are organized in 
different groups, called clusters. Each node is connected with one node at lower depth, 
called parent node, and can be connected with multiple nodes at upper depth, called 
child nodes.  

The cluster-tree topology contains two main types of nodes. First, the nodes that can 
associate with previously associated nodes and can participate in the multi-hop routing 
are referred to as routers (Rij, i.e router j at depth i). Second, the leaf nodes that do not 
allow association of other nodes and do not participate in routing are referred to as 
end-nodes (N). The router that has no parent is called root (it might hold special 
functions such as identification, formation and control of the entire topology). Routers 
and end-nodes can both have sensing capabilities. Therefore they are generally referred 
to as sensor nodes. Each router forms its cluster and is referred to as cluster-head of this 
cluster.  

In this work we aim at specifying the worst-case cluster-tree topology, i.e. the 
network topology configuration that leads to the worst-case performance. This means 
that a dynamically changing cluster-tree WSN can assume different configurations, but it 
can never exceed the worst-case topology, in terms of maximum depth and number of 
child routers/end-nodes. Thus, the worst-case cluster-tree topology is graphically 
represented by a rooted balanced directed tree [85] defined by the following three 
parameters: 

− 
: Height of the tree, i.e. the maximum number of logical hops from the 
deepest router to the root. A tree with only a root has a height of zero.  

− ����_������� : Maximum number of end-nodes that can be associated to a router. 
− ���������� : Maximum number of child routers that can be associated to a parent 

router. 
 

The depth of a node is defined as the number of logical hops from that node to the 
root. The root is at depth zero, and the maximum depth of an end-node is H+1.  

Note that the sink is a special type of node that gathers the sensory data from all 
sensor nodes inside the network. Unlike previous work, we relax the assumption that the 
sink is only associated with the root and consider the sink to be an autonomous and 
topology-independent mobile node. The mobile behaviour means that a sink moves 
arbitrarily within a static cluster-tree WSN and can be associated with any router within 
communication range. The router, to which the sink is in a given moment associated, is 
referred to as sink router. There can be more than one mobile sink in a WSN, but we 
assume that only one is active (i.e. gathers the sensory data) at a given time. We specify 
another parameter, ����� ∈  0, �#, to represent the depth at a given moment of the sink 
router in a cluster-tree topology. Note that if the sink is associated with the root, i.e. 
����� = 0, the network contains only upstream flows. This case has already been 
analysed in [79]. In this work, we analyze the case where ����� > 0. 
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Figure 51 - The cluster-tree topology and data flow  models 

Our terminology and conventions are as illustrated in Figure 51, corresponding to a 
configuration where � = 2, '(�)_�*)(+,- = 3, '/*01(/+,- = 2, and ����� = 2. Note that a 
cluster-tree WSN may contain additional nodes per router than those defined by '/*01(/+,-  
and '(�)_�*)(+,-  parameters. However, these additional nodes cannot be granted guaranteed 
resources. 

6.3.2 Data Flow Model 
In this work, we assume that all sensory data is exclusively sent to the sink. All sensor 
nodes are assumed to sense and transmit data upper bounded by the arrival curve  
2)�1� 3# = �)�1� + �)�1� ∙ 3. In case of different data flows, 2)�1� 3# is considered to 
represent the upper bound of the highest flow in a network. This may introduce some 
pessimism to the analysis if the variance between data flows is significant.  

Each end-node is granted a service guarantee from its parent router corresponding to 
the rate-latency service curve 4)�1� 3# = �)�1� ∙  3 − 	)�1�#6.  

The output arrival curve 2)�1�∗  3#, which upper bounds the outgoing data flow from 
any end-node is characterized as follows: 

2)�1�∗  3# = 2)�1� 3# + �)�1� ∙ 	)�1� (6.2) 

The computation is showed in [16]. On the other hand, the amount of bandwidth 
allocated by each router depends on the cumulative amount of data at its inputs, which 
increases towards the sink. Thus, the total input function R of each router depends on the 
depth, and consists of the sum of the output functions R* of its end-nodes and child 
routers. Additionally, the router itself can be equipped with sensing capability producing 
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a traffic bounded by 2)�1� 3#. Thus, the arrival curve constraining the total input function 
R of a router at general depth i is expressed as: 

28� = 2)�1� + '(�)_�*)(+,- ∙ 2)�1�∗ + 9 2/*01(/ �6:,;#∗
<=>?@A=BCD

;E:
 (6.3) 

The outgoing flow of a router at depth i is upper bounded by the output arrival curve 
as follows: 

2�∗ = 28�⨀4�G: (6.4) 

Hence, the data flow analysis consists in the computation of the arrival curves 28� and 
2�∗, using iteratively Eqs. (6.3) and (6.4) from the deepest routers until reaching the sink. 
After that, the resource requirements of each router, in terms of buffer requirement Qi 
and bandwidth requirement Ri, and the worst-case end-to-end delay bound of WSN are 
computed.  

In cluster-tree WSNs where the sink can be associated with a router other than the 
root, data flows may then be redirected in the downstream directions. Data flows over 
upstream links (called upstream flows) have already been analysed in [79]. Data flows 
over downstream links (called downstream flows), where data is sent from a parent 
router to its child router, are analysed in this work. In what follows, the upstream and 
downstream flows are marked by the subscripts U and D, respectively (e.g. 2�H∗ , 2�I∗ ). We 
also assume two types of service curves (i.e. 4�H for upstream flows and 4�I downstream 
flows) provided by each parent router at depth i to its child routers at depth i+1, as 
presented in [16]. 

To ensure the symmetry properties of the worst-case cluster-tree topology assumed in 
our methodology, the same downstream or upstream service curves must be guaranteed 
to all downstream or upstream flows at a given depth, respectively. 

The detailed data flow analysis (input and output, upstream and downstream), is 
presented in [16], along with the worst-case network dimensioning. These 
methodologies were then applied to the specific case of IEEE 802.15.4/ZigBee. 

6.3.3 Time Division Cluster Scheduling 
In general, the radio channel is a shared communication medium where more than one 
node can transmit at the same time. In cluster-tree WSNs, messages are forwarded from 
cluster to cluster until reaching the sink. The time period of each cluster is periodically 
divided into an active period (AP), during which the cluster-head enables data 
transmissions inside its cluster, and a subsequent inactive period, during which all 
cluster nodes may enter low-power mode to save energy resources. To avoid collisions 
between multiple clusters, it is mandatory to schedule active periods of different clusters 
in an ordered sequence, called Time Division Cluster Schedule (TDCS). In other words, 
TDCS is equivalent to a permutation of active periods of all clusters in a WSN such that 
no inter-cluster interference occurs. In case of one collision domain (i.e. all nodes hear 
each other), the TDCS must be non-overlapping, i.e. only one cluster can be active at 
any time. On the contrary, in a network with multiple collision domains, the clusters 
from different non-overlapping collision domains may be active at the same time.  
The number of feasible TDCSs in a network with n routers inside one collision domain 
is equal to the number of permutations given by n factorial (n!). Note that for each data 
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flow originated in a given node, there is a corresponding best-case/worst-case TDCS that 
minimizes/maximizes the end-to-end delay of that flow, respectively. Thus, it is 
impossible to determine a general best-case or worst-case TDCS meeting the 
requirements of all data flows. Our methodology based on the symmetric properties of 
cluster-tree topology, for dimensioning the network resources of a WSN for the 
worst-case TDCS, is presented in more detail in [78]. 

6.4 IEEE 802.15.4/ZigBee Cluster-Tree WSN Setup 
For our experimental scenario, we consider a simple cluster-tree WSN corresponding to 
the configuration where � = 2, '(�)_�*)(+,- = 1, '/*01(/+,- = 2. For the sake of simplicity, 
only end-nodes are equipped with sensing capability (i.e. S = 0) and generate data flows 
bounded by the arrival curve 2)�1� 3#. We assume a minimum possible value of SO (e.g. 
SO = 4, imposed by some technological limitation of our experimental platforms, namely 
due to the non-preemptive behaviour of the TinyOS [43] operating system. According to 
[16] the total number of routers is equal to 7. Hence, BO must be set such that at least 7 
SDs with SO = 4 can fit inside the BI without overlapping as presented in [16]. 

As a result for SO = 4, the minimum BO is equal to 7, such that a maximum of 
27/24 = 8 SDs can fit in one BI. The maximum duty cycle of each cluster is then equal to 
(1/8) = 12.5 %. Note that to maximize the lifetime of a WSN, the lowest duty cycles 
must be chosen. On the other hand, low duty cycles enlarge end-to-end delays. Hence, 
long lifetime is in contrast to the fast timing response of a WSN, so a trade-off must be 
found. 

According to [24], the minimum CAP is equal to 7.04 ms, assuming the 2.4 GHz 
ISM band, which corresponds to 1 time slot with SO = 4. The remaining slots can be 
allocated for GTSs. Hence, the maximum CFP length is equal to LCFP = 15 time slots. 
With this constraint, a router cannot reserve more than LCFP time slots for 7 GTSs 
maximum, i.e. for its '(�)_�*)(+,-  end-nodes and '/*01(/+,- child routers. Assuming that each 
end-node requires allocation of a GTS with ')�1�KL  time slots (i.e. rdata ≤ ')�1�KL ·RTS) from 
its parent router. Then, each child router can allocate a GTS with the maximum number 
of time slots equal to: 

 
MNOPQR − ')�1�KL ∙ '(�)_�*)(+,- S/'/*01(/+,- U (6.5) 

 
The computation of the data arrival rate not to exceed the maximum bandwidth a 

parent router can reserve, in done in [16].  

6.5 Experimental Evaluation 
In this section, we compare the analytical results based on Network Calculus that were 
proposed in this work, with the experimental results obtained through the use of IEEE 
802.15.4/ZigBee technologies. The analytical results are computed using a MATLAB 
model [86], and the experimental results are obtained using a real test-bed based on the 
TelosB motes [26]. 
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6.5.1 Experimental Setup 
The experimental test-bed (illustrated in Figure 52) consists of 14 TelosB motes running 
the TinyOS 1.x operating system with our open source implementation of the IEEE 
802.15.4/ZigBee protocol stack [18]. The TelosB is a battery powered wireless module 
with integrated sensors, IEEE 802.15.4 compliant radio, antenna, 16-bit RISC 
microcontroller, and programming capability via USB. For debugging purposes, we have 
used the Chipcon CC2420 packet sniffer [37] that provides a raw list of the transmitted 
packets, and the Daintree Sensor Network Analyzer (SNA) [38] that provides additional 
functionalities, such as the graphical topology of the network. Note that, in practice, the 
experimental deployment can span over a wide region where each end-node or child 
router must be in radio range of its parent router. 

 
Figure 52 - The test-bed deployment for Hsink =1 

The analytical model [86] was developed in MATLAB, and can run in Command 
Line Interface (CLI) mode or Graphical User Interface (GUI) mode. On the left hand 
side of the GUI in Figure 53, the network and sensory data flow parameters are entered. 
After the computation, the results and optionally several charts are shown on the right 
hand side. The values in Figure 53 correspond to the under mentioned network setting 
and the results from Section 6.5.2, namely the worst-case end-to-end delays for Hsink = 0. 

We configured the application running on the sensor nodes to generate 3 bytes at the 
data payload. Hence, the maximum size of the MAC frame is equal to MPDUmax = 192 
bits (i.e. MAC Header = 88 bits, FCS = 16 bits, Network Header = 64 bits, and Data 
Payload = 24 bits). Note that all devices in WSN have unique 16 bit short addresses 
allocated by the PAN Coordinator during the association process. 

TinyOS 1.x flushes the reception buffer of the radio transceiver after processing the 
first arriving frame. Thus, the frames that arrive during the processing time of the first 
frame are discarded. This problem has been already reported and fixed in TinyOS 2.x. 
Since our implementation of IEEE 802.15.4/ZigBee protocol stack was built over 
TinyOS 1.x, we overcame the aforementioned problem by setting the inter-frame 
spacing (IFS) time (i.e. time between two consecutive frames) such that no frame arrives 
during the frame processing times. The experimental value of IFS equal to 3.07 ms was 
measured.  
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Figure 53 - The GUI of the MATLAB analytical model  

As presented in [16] the bandwidth guaranteed by one time slot for SO = 4 is equal to 
3.125 kbps with 100% duty cycle. Hence, in our experimental scenario with a 12.5 % 
duty cycle (i.e. BO = BOmin = 7), the guaranteed bandwidth of one time slot is equal to 
RTS = 3.125 · 0.125 = 0.3906 kbps. Let us assume ')�1�KL  = 1. Then, as described in [16], 
we obtain the maximum arrival rates of the sensory data flow as follows 

− �)�1�+,- = 456 bps for Hsink = 2 
− �)�1�+,- = 684 bps for Hsink = 1 
− �)�1�+,- = 911 bps for Hsink = 0 (root) 

 
As a result of rdata ≤ min(�)�1�+,-) and rdata ≤ RTS, we consider an average arrival rate 

equal to rdata = 390 bps, which corresponds to 4 frames (192 bits each) generated during 
one Beacon Interval (BI = 1.96608 sec). We assume that the burst tolerance is equal to 
bdata = 576 bits, which corresponds to 3 frames generated at once. Hence, each sensory 
data flow is bounded by arrival curve αdata(t) = 576 + 390·t. Note that Network Calculus 
based analytical model is bit oriented, while the experimental test-bed is frame oriented. 
The frames can be generated as constant bitrate (CBR) or variable bitrate (VBR) traffic 
upper bounded by the arrival curve αdata(t) (Figure 54). 

Finally, let us summarize the complete network setting 
− '/*01(/+,-  = 2 
− '(�)G�*)(+,-  = 1 
− H = 2 
− SO = 4 (SD = 245.76 ms) 
− BO = 7 (BI = 1966.08 ms) 
− Duty Cycle = 12.5 % 

− MPDUmax = 192 bits 
− rdata = 390 bits 
− bdata = 576 bits 
− IFS = 3.07 ms 
− LCFP = 15 
− S = 0  

 



Chapter 6 – Real-Time Communications over  
Cluster-Tree Wireless Sensor Networks 

 

 

94 

 

Figure 54 - The sensory traffic generation 

We assume the worst-case TDCS of a flow along the longest routing path from router 
R24 to the sink (Figure 51) given by the following sequence of superframe durations: 
SD11, SD01, SD12, SD24, SD23, SD21, SD22. Note that we consider only unacknowledged 
transmissions and all nodes inside one collision domain. 

6.5.2 Experimental vs. Theoretical Results 

Buffer Requirements 
Figure 55 presents the theoretical worst-case buffer requirement of the routers at given 
depth as a function of the sink position. It can be observe that end-nodes have the 
smallest buffer requirement as they are the leaves of the tree, and that the buffer 
requirement grows in direction of the sink router. Since the sink can be associate to any 
router in a WSN and in order to avoid buffer overflow, all routers at depth i should 
allocate a buffer of capacity equal at least to the maximum buffer requirement at given 
depth i (e.g. all router at depth 0 allocate a buffer of capacity equal to 15.995 kbits), 
which effectively demonstrates how these analytical results can be used by a system 
designer. 

Figure 56 shows the theoretical worst-case buffer requirements compared with the 
maximum values obtained through real experimentation, for Hsink = 2. 

First, the theoretical buffer requirements are divided into three portions according 
their origin, as we have shown in [16]. Observe that the cumulative effect of the burst is 
more important than the cumulative effect of the service latencies. The effect of the 
service latencies may be more important for other setting of bdata and rdata. So, the 
different setting of the sensory arrival curve affects the buffer requirements. The minor 
effect of the upstream service latency at depth 0 is given by the priority rules (refer to 
[16]), such that the data arriving during the transmit GTS (i.e. upstream flow) are stored 
in the root until the receive GTS (i.e. downstream flow), at the end of the same SD, is 
active and data is dispatched.  
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Figure 55 - The worst-case buffer requirements per router as a function of the depth 

and sink position 

The next observation confirms that the theoretical values upper bound the 
experimental values. The pessimism of the theoretical bounds is justified by the fact that 
the Network Calculus analytical model is based on a continuous approach (arrival and 
service curves are continuous) in contrast to the real stepwise behaviour of flows and 
services in the test-bed. 

 
Figure 56 - The theoretical vs. experimental buffer  requirements 

In practice, the data is actually transmitted only during its GTS, while in the 
analytical model we consider a continuous data flow during the whole BI, since it 
represents the average rate and not the instantaneous rate. Figure 57 illustrates the 
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problem and shows the arrival and service curves of a data flow sent by an end-node to 
its parent router. The burst of the outgoing data flow �)�1�∗  is equal to 
���KV , in case of 
the analytical model, or 
���W-R , in the experimental case. Due to the cumulative flow 
effect, the differences between theoretical (
���KV ) and experimental (
���W-R ) values of 
buffer requirement grow with depth. The rate-latency service curve used in our analysis 
results from a trade-off between computing complexity and pessimism. 

 
Figure 57 - Theoretical vs. experimental data traff ic 

The numerical values of theoretical worst-case as well as experimental maximum 
buffer requirements are summarized in Table 5. In Table 5 and 6, U means an upstream 
router at depth i or an upstream link to a router at depth i, and D means a downstream 
router or a downstream link from a router at depth i. 

Table 5 - Delay bounds: theoretical vs. experimenta l results 

 depth 
theoretical results  

(worst-case values) 
experimental results 
(maximum values) 

Ri [kbps] 'X
	Y Qi [kbits] Qi [kbits] 

Hsink = 0 
(root) 

0 U 1.7 3 15.995 5.376 
1 U 0.39 1 7.329 2.304 
2 U — — 2.008 0.768 

Hsink = 1 

0 
D 1.56 4 8.667 3.072 
U 1.17 3 — — 

1 
D — — 14.02 5.376 
U 0.39 1 7.257 2.304 

2 U — — 2.008 0.768 

Hsink = 2 

0 
D 1.56 4 8.667 3.072 
U 1.17 3 — — 

1 
D 2.34 6 15.966 4.608 
U 0.39 1 7.257 2.304 

2 
D — — 17.3 5.376 
U — — 2.008 0.768 

end-node 0.39 1 1.337 1.344 
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Delay Bounds 
In Figure 58, we compare the worst-case, maximum and average values of per-hop 
delays bound in each router, and the end-to-end delay bounds for Hsink = 2. A first 
observation confirms that theoretical values upper bound the experimental values. The 
difference in theoretical worst case (����KV ) and experimental maximum (����W-R ) delays is 
given by the aforementioned continuous and stepwise behaviors of the analytical model 
and test-bed, respectively. The experimental delays comprise mainly the service 
latencies (Figure 58) decreasing in the direction of the sink (Figure 51). Hence, the 
maximum per-hop delays also decrease in the direction of the sink as you can observe in 
Figure 58. The low downstream delay at depth 0 results from priority rule. The end-to-
end delays bounds are quite high, even though the bdata and rdata are low. This is mainly 
due to high value of SO = 4 (i.e. BI = 1.966 sec). Hence, the end-to-end delay bounds 
can be reduced using lower values of SO or higher bandwidth guarantees, using lower 
IFS, for example.  

Observe also that the worst-case end-to-end delay obtained by the per-flow approach 
offers less pessimism than the delay from the per-hop approach.  

Table 6 presents the worst-case, maximum and average numerical values of per-hop 
and per-flow delay bounds, and the end-to-end delays for given sink position. 

 
Figure 58 - Theoretical vs Experimental delay bound s 

Note that the average values were computed from the set of 15 measurements, 
involving 1155 frames each.  
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Table 6 – Delay bounds: theoretical vs. experimenta l results 

 depth 
theoretical results  

(worst-case values) 
experimental results 

maximum average 
Di [sec] Di [sec] Di [sec] 

Hsink = 0 
(root) 

1 U 6.257 1.764 1.308 
2 U 5.143 1.812 1.602 

De2e  14.82/9.69 7.154 4.952 

Hsink = 1 

0 D 5.547 0.104 0.099 
1 U 6.195 1.76 1.728 
2 U 5.143 1.809 1.602 

De2e 20.31/10.53 7.251 5.471 

Hsink = 2 

0 D 5.547 0.104 0.099 

1 
D 6.814 1.812 1.321 
U 6.195 1.766 1.728 

2 D 5.143 1.814 1.135 
De2e 27.13/13.65 9.074 6.325 

end-node (Ddata) 3.425 3.578 2.042 

 

The determination of the optimal service curve, leading to the lowest worst-case 
delay, will be addressed in future work. 

Lifetime of a WSN 
We have already mentioned previously that to maximize the lifetime of a WSN, low 
duty cycles are required. On the other hand, low duty cycles enlarge timing response of a 
WSN. Our assumptions are confirmed in Figure 59 which shows the theoretical worst-
case and experimental maximum end-to-end delays as a function of duty cycle for Hsink = 
0. The value of SO is set to 4 and the decreasing duty cycles are given by increasing BO. 
Note that the minimum BO is equal to 7 for SO = 4. To avoid the lack of bandwidth for 
lower duty cycles, the average arrival rate must be reduce to rdata = 0.190 kbps 
(�)�1�+,-  = 0.195 kbps for duty cycle equal to 3.125%). The other network settings are the 
same as in previous experiments. The theoretical worst-case end-to-end delays are 
obtained by per-hop and per-flow approaches. The observation again confirms that the 
theoretical values upper bound the experimental values, and the worst-case delay 
obtained by the per-flow approach offers less pessimism than the delay from the per-hop 
approach. 
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Figure 59 - The theoretical worst-case and experime ntal maximum end-to-end delays 

as a function of duty cycle for Hsink = 0 (lifetime  of a WSN) 

6.6 Concluding remarks 
In this work, we tackled the worst-case dimensioning of cluster-tree wireless sensor 
networks (WSN) assuming that the data sink can be mobile, i.e. can be associated to any 
router in the sensor network. We developed a 7 clusters test-bed based on Commercial-
Off-The-Shelf technologies, namely TelosB motes running our open-ZB protocol stack 
over TinyOS. This test-bed enabled us to assess the pessimism of our worst-case 
theoretical results (buffer requirements and message end-to-end delays), by comparing 
these to the maximum and average values measured in the experiments. 

Importantly, we showed how it is possible to instantiate our generic methodology in 
IEEE 802.15.4/ZigBee, which are promising technologies for WSN applications.  
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Chapter 7  
ERIKA and Open-ZB: a Toolset for Real-Time 

Wireless Networked Applications 

 
IEEE 802.15.4/ZigBee and TinyOS have been playing an important role 
in leveraging a new generation of large-scale networked embedded 
systems. However, based on previous experience on the implementation 
and use of the IEEE 802.15.4/ZigBee protocols over TinyOS, several 
problems (producing loss of synchronization and even network crashes) 
emerge due to some limitations of TinyOS, namely related to the lack of 
task pre-emption and prioritization. Therefore, we implemented the 
IEEE 802.15.4 protocol over ERIKA, a real-time operating system for 
resource-constrained embedded systems. This chapter presents the most 
important aspects of the software implementation and reports 
comparative experimental results based on real hardware and software 
platforms.  

7.1 Introduction 
IEEE 802.15.4 / ZigBee protocols provide timeliness guarantees when operating in 
beacon-enabled mode. This mode offers the possibility of allocating/ deallocating time 
slots in a Superframe, called Guaranteed Time Slots (GTSs), and therefore the possibility 
of providing predictable minimum service guarantees. Having a minimum service 
guarantee, it is possible to predict the worst-case timing performance of the network. 
Open-ZB [19] is an open source implementation of the IEEE 802.15.4 / ZigBee suite of 
protocols. It is however an implementation over TinyOS. The protocols are implemented 
through a number of carefully designed processing tasks. The design tries to minimize 
the impact of nonpreemption in delaying critical tasks such as the ones related to beacon 
transmission and generation. It is however proved [21] that when clusters operate at very 
high duty-cycles and beacon transmission frequencies, nodes may lose synchronization 
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and therefore get disconnected from the rest of the network. Moreover, if a node is not 
properly synchronized, there is a possibility of collisions in the GTS slots (in case the 
CAP overlaps the CFP). 

Non-preemption and lack of task prioritization is therefore the major drawback of the 
Open-ZB implementation of the ZigBee suite of protocols. 

In order to overcome this problem, we propose, discuss and analyse an alternative 
implementation of the Open-ZB protocol stack over the ERIKA real-time OS [44]. The 
results hereby presented demonstrate that ERIKA enables reliable beacon 
synchronization, even under high duty cycles, and leads therefore to improved network 
performance when compared to implementations based on TinyOS. The main 
contribution of this work is the actual implementation of the IEEE 802.15.4 /ZigBee 
protocols over the ERIKA real-time operating system. It thus enables an open source 
tool suite that overcomes the problems of synchronization that occur in the 
implementation of the IEEE 802.15.4 over TinyOS. 

7.2 Software Implementation 

7.2.1 Architecture 
The implementation of the IEEE 802.15.4 protocols over ERIKA is organized in a 
layered architecture. In this design we build the networking stack by the use of 
Operating System primitives, generic libraries and the hardware features provided by the 
Micro-Controller Unit (MCU). Figure 60 illustrates the overall software architecture. 
 
 

 
Figure 60 – Stack implementation layered architectu re  

The HW layer abstracts the current selection of hardware components including the 
Microchip dsPic33F MCU, CC2420 Chipcon transceiver, and the FLEX development 
board (embedding LCD, LEDS, etc., see Chapter 3 concerning technologies). To ensure 
a clean design, the hardware-driven facilities are separated from the rest of the 
implementation. In the HW interrupts layer the ERIKA Interrupt Service Routines 
(ISRs) are implemented to handle all hardware interrupts. Moreover, in the ieee802 15 4 
layer all the hardware related attributes specific for implementing the IEEE 802.15.4 
communication protocol were implemented separately. This layer contains the code to 
initialize the hardware timers, to initialize the communication between CC2420 
transceiver and MCU, and to handle timer and transceiver interrupts. The CC2420 driver 
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is a component for sending commands to and exchanging data I/O with the transceiver. 
This driver exports to Transceiver-HAL all the primitives standardized in IEEE 802.15.4 
PHY. The Transceiver-HAL is a helper layer aware of the upper IEEE 802.15.4 MAC 
and CC2420 driver, designed to extend the support to different hardware solutions. The 
ERIKA layer is responsible for managing the system hardware resources and is 
providing the typical OS services such as Task management, resource access control, 
interrupt and timer management. Software timer abstractions are provided by means of 
software counters and alarms. 

Alarms are software abstractions for timers. These alarms are used in this context to 
activate periodic tasks. ERIKA alarms, configured for communication purposes, can be 
initialized with a desired rate, stopped and reset whenever required. The common lib is a 
generic library providing some software utilities to the upper layers. More specifically, 
this layer provides: basic data structures such as queues, circular queues, indexed 
structures, etc used in memory buffer management; debugging helper, e.g. utilities for 
printing data on the console using the serial communication with the MCU through the 
UART port. The ieee802 15 4 Lib is the heart of the network stack. It includes the PHY 
and MAC layers of IEEE 802.15.4 standard. This layer is concerned only with the 
implementation details of the communication, and makes use of the timing services and 
memory management services provided by underlying layers. The IEEE 802.15.4 
physical layer (shown in Figure 61) is responsible for the implementation of the 
following functionalities: 
 

− Activation and deactivation of the radio transceiver; 
− Channel frequency selection; 
− Energy Detection(ED) within the current channel; 
− Turnaround of the radio; 
− Link quality indicator (LQI) for received packets; 
− Clear Channel Assessment (CCA) for Carrier Sense 
− Multiple Access Collision Avoidance (CSMA-CA). 

 

Figure 61 - PHY Layer reference model  

The Physical Data Service Access Point (PD-SAP) is responsible for receiving and 
sending the data from and to the MAC layer. The Physical Layer Management Entity 
SAP (PLME-SAP) includes the interfaces between the MAC and the PHY used for 
exchanging management information. 
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Figure 62 - MAC layer reference model 

The IEEE 802.15.4 MAC layer (shown in Figure 62) is responsible for the 
implementation of the following functionalities: 

− Generating network beacons if the device is a coordinator; 
− Synchronizing to the beacons; 
− Supporting PAN association and disassociation; 
− Supporting device security; 
− Employing the CSMA-CA mechanism for channel access; 
− Handling and maintaining the GTS mechanism; 
− Providing a reliable link between two peer MAC entities. 

7.2.2 Implemented services 
Currently we have implemented most of the basic mechanisms of Open-ZB over 
ERIKA. We developed a fully functional, customized driver for the CC2420 transceiver. 
Our libraries support the generation of the MAC superframe and provide the slotted 
CSMA/CA access mechanisms. The protocol services have been mapped to tasks having 
reserved a set of priorities for network-related use only. Regarding memory usage, buffer 
queues have been statically allocated in the global scope to accommodate message 
payloads (MPDU) used for send and receive. Concerning networking we enabled the 
modules related to MAC & PHY services in the Open-ZB package. More precisely we 
implemented Beacon transmission at every Beacon Order, Static Network formation (i.e. 
without negotiation and with statically assigned MAC addresses), Coordinator/ End 
device time synchronization using CSMA/CA slotted mode. Thus, we enable data 
transmission and reception in unslotted and slotted mode including GTS allocation and 
transmission. Since negotiation is not yet implemented, currently it is up to the 
application programmer to actually define network addresses and to allocate GTS slots 
for end devices. 

7.2.3 Implementation details 
To configure the network stack in ERIKA we use the OIL language: this includes the 
creation of the tasks required by IEEE 802.15.4 protocol, their respective priorities, the 
usage of ERIKA alarms and the choice of a scheduling policy. In Table 2 we list the 
service tasks assigned together with their priorities, the periods and the associate alarms 
used for their activation. 
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Most of these tasks are periodic with rate dependent on the IEEE 802.15.4 protocol 
specification, Beacon Order (BO) and Superframe Order (SO) settings. To generate 
these precise timing values we make use of a 16 bit hardware timer provided by 
dsPic33F processor. This timer has a minimum tick value of 0.025 µs when the 
microcontroller is configured to work at 40 MHz operating frequency. 

The hardware timer is set to have a granularity of 320 µs required by the backoff 
interval specified in the IEEE802.15.4 standard. All the networking tasks depend on it 
since their activation periods are integer multiples of 320 µs. Concerning memory, in our 
design we make use of three memory buffers. These global memory locations are shared 
by different modules and require mechanisms for mutual exclusion and synchronization: 
ERIKA “resources” have been used for such a purpose (see Table 7). 
 

 

Table 7 - Memory buffers and ERIKA resources set as  guards 

In the IEEE 802.15.4 framework, beacon transmissions are used to synchronize the 
devices. Thus, in our implementation the alarms are re-aligned after the beacon has been 
recognized and processed. 

The algorithm works as follows (see Figure 63). At the firing of an event of Start of 
Frame Delimiter SFD) from the radio, an ISR interrupt handler is executed. In the 
handler code, a clock timer is activated tracking the time needed to recognize the packet 
as a beacon. Next, at the firing of the FIFOP event (denoting that the RX buffer has been 
filled), the ReadDispatcher (high priority) task is activated. After reading the first 3 bytes 
of the packet (enough to know the packet type), if the packet is recognized as a beacon, 
the task continues its execution (safe from eventual pre-emption) until all information 
carried by the beacon are processed and the timer is stopped (the counter reads ∆T ); if 
the packet is not a beacon another task is in turn activated to process the data at a lower 
priority. The information on ∆T are used to synchronize the alarms with the arrival of 
the beacon (SFD), having taken note of the beacon reception and processing overhead. 
In our experiments, ∆T has never exceeded 1.9 ms. This number is probably dominated 
by the transceiver response time (i.e. the time needed to receive all bits of the beacon, 
and transmit them over the SPI bus).  

 

Figure 63 - Beacon processing in ERIKA 
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7.3 Experimental work 

7.3.1 Data collection and analysis method 
The implementation of the IEEE 802.15.4/ZigBee has been validated by using the 
Chipcon CC2420 Packet Sniffer. The CC2420 Packet Sniffer for IEEE 802.15.4 v1.0 
provides a raw list of the packets transmitted. Thanks to this hardware/software suite, it 
is possible to collect detailed record of the packets transmitted over air by all WSN 
devices and analyze them off-line. 

7.3.2 Beacon Transmission Timing Coherence and Clock Drift calculation 
As already mentioned in Section 3.1, to transmit the beacons, we use ERIKA alarms. In 
order to measure the time coherence in beacon transmission we used the timestamping 
support of the Chipcon testing suite. At Beacon Order (BO) of 6 we obtained the results 
as shown in Figure 64.  

 
Figure 64 - Beacon inter-arrival time at the sniffe r board 

Analyzing the plot, and neglecting any spread in propagation time (of the order of a 
few ns), we observe that ERIKA is about 50 µs late with respect to the nominal value. 
This effect is proven in the following to be due to the clock drift accumulated at the 
source device in one BI. Although displaced, the ERIKA alarm coherence is in the order 
of 1 µs. We measured the Beacon Interval letting the BO vary from 0 to 8. The results 
are shown in Table 11.  
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Table 8 - Observed time divergence from nominal val ue 

The observed trend as function of BO demonstrates that the effect is due to the clock 
drift. From the value corresponding to BO = 8, we can even estimate the clock drift as: 

 
This is true, assuming equal accuracy for the dsPic33F and the Chipcon Sniffer Board. 

7.3.3 Contention Free Transmissions 
We prepared an experimental setup consisting of 3 nodes: one PAN coordinator and 2 
transmitting node devices. 

Following the IEEE 802.15.4 standard, GTS allocation is performed by the PAN 
coordinator, which in our setup allocates two GTSs (4 time slots wide each) to the other 
nodes, as shown in Figure 65. Multiple frame transmission has been implemented in 
device nodes spanning the total duration of the allocated bandwidth. Following the 
standard, a set of 12 frames are injected into the network without contention by each 
device at every superframe. In a set of runs, each composed by about 400 beacons at BO 
= 4, the CC2420 packet sniffer detected on average 99% of the scheduled transmissions. 
The few missed frames are due to frame error occurrences probably caused by 
interference with IEEE 802.11 channels. 

7.4 Comparative performance results 
In this section, we compare the performance (throughput and packet delivery ratio) of 
our hardware/software platform (ERIKA + Open-ZB) with respect to other popular ones, 
namely: 

− TinyOS 2.0 and BMAC on Telos-B;  
− TinyOS 2.0 and Open-ZB on Telos-B. 
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Figure 65 - Guaranteed Time Slots allocated to Devi ce 1 and 2 to inject packets 

without contention access  

Our testbed consists of a multi-task firmware with the Constant Bandwidth Rate 
(CBR) traffic generator scheduled together with the other tasks implementing the 
network stack services. The payload (104 bytes), and the number of transmitted packets 
(1000) are fixed. The inter-frame period (i.e. the inverse of the traffic rate) is a tunable 
parameter. The number of delivered packets and the total elapsed time are extracted from 
the Chipcon sniffer application. 

7.4.1 Downsizing FLEX to Telos-B 
Unfortunately, an implementation of ERIKA for the Telos-B board is not yet available. 
The dsPic processor on the FLEX board normally runs at 40 MHz, whereas the Texas 
Instrument MSP430 processor used on the Telos-B has a maximum processor frequency 
of 8 MHz. To remove the bias in comparing these two platforms, we prescaled the dsPic 
internal clock by a factor of 5, thus operating it at 8MHz. In addition, we set the SPI 
frequency for MCU – radio I/O in both platforms to the same frequency of 1 MHz. 
Finally, in both implementations, we allocated memory buffers of the same size for 
packets. 

Thus, apart from the instruction set architectures, the two platforms are equivalent. 
For better comparison, we run the same experiments on the FLEX both at full speed and 
at the pre-scaled frequency. As shown in Figure 66, the effect introduced by the CPU 
speed is not negligible at low rate, up to about 200 Hz. However, above this threshold 
the role played by the hardware is very limited with respect to software effectiveness, as 
it will be shown in the next section. 
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Figure 66 - Throughput using ERIKA+FLEX (Left) and Packet delivery ration using 
ERIKA+FLEX (Right), at different microcontroller sp eeds  

7.4.2 Comparing ERIKA with TinyOS 
With a downsized FLEX board, the comparison between the ERIKA+Open-ZB on 
FLEX and TinyOS on Telos-B (with BMAC and Open-ZB) is fair. We run several 
experiments on the 2 platforms, each time increasing the rate of packets sent, and 
measuring the effective throughput and packet delivered ratio. The results are shown in 
Figure 67.  
 

Figure 67 – Throughput using ERIKA+FLEX (left) and Packet delivery ratio using 
ERIKA+FLEX 

 
The ERIKA solution outscores the TinyOS-based ones at every CBR rate apart from 

the first point (100 Hz). The saturation of the curve observed around 150 kbps is related 
to the transceiver maximum rate since it is very much correlated with the drop in the 
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delivered ratio (i.e. probability of successful transmission). Moreover we found the 
ERIKA + Open-ZB solution more convenient up to about 400 Hz. 

7.5 Concluding remarks 
The rising demand for using WSNs in industrial automation and new exciting 
application domains as distributed video processing require support for 
hardware/software platforms exhibiting real-time behaviour. However, popular and 
widespread operating systems like TinyOS cannot support real-time behaviour in this 
context. To overcome these limitations, we decided to implement a software suite 
integrating the ERIKA OS real-time kernel with the Open-ZB network stack. In this 
chapter we presented the architecture of our software and the internal implementation. 

Although the work is not yet complete, most of the services are operational and a 
complete set of tests have been presented in this chapter to validate our implementation. 
The results are very encouraging. Our hardware/software platform can achieve very high 
throughput and packet delivery ratio with respect to existing solutions based on TinyOS. 
Moreover, we show a high timing coherence in the beacon transmission and high 
reliability in packet delivery. 

Given these concrete and promising results, we firmly believe that it is indeed 
possible to provide support for real-time execution and network transmission in cheap 
hardware platforms. Currently, we are completing the implementation of all the services 
in Open-ZB, including bandwidth allocation strategies and support for application-level 
QoS management and control. In the near future, we plan to use our platform to carry on 
advanced research on distributed video processing in dense WSNs. It is also envisaged to 
implement the core ZigBee Network Layer functionalities to support multi-hop 
communications, namely Cluster-Tree network topologies. 
 
 
 
 
 
 
  



 

 

Chapter 8  
Hands-on Work over a Real Application 

Scenario 

This chapter presents a deployment of a Wireless Sensor Network in a 
real application scenario. This scenario aims at demonstrating the 
impact of the presence of hidden-nodes in a real target tracking 
application. Some of the problems and challenges faced are discussed, 
namely in what concerns technological limitations, as well as some 
hands-on experience gained from this implementation. 

8.1 Introduction 
Target tracking applications are highly demanding in timeliness and therefore very 
appealing to serve as platforms for testing and demonstrating the real-time operation of a 
network. This premise lead to the development of a Search and Rescue application ([87], 
[88]) for testing, validating and demonstrating the architecture and mechanisms of the 
ART-WiSe research framework [11]. A first approach to this application was reported in 
[12]. 

In this chapter we propose to assess and demonstrate the impact of the hidden-
terminal problem in a real WSN application. With this purpose a new application 
scenario was built over the aforementioned Search and Rescue testbed application.  

During the development of the application some challenges were faced. Most of them 
were related to technological limitations in terms of hardware, timer handling and 
operating system limitations. These problems are reported here, as well as some physical 
layer aspects such as coexistence problems between IEEE 802.15.4 and IEEE 802.11 
radio channels. 
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8.2 Snapshot of the ART-WiSe Search & Rescue testbed 
application 
The overall objective of the application is to detect, localize and rescue a target entity, 
within a certain region covered by a WSN deployment. Mobile robots are currently 
being used to act as target and rescuer/pursuer entities [87]. 

The target robot is supposed to be in distress (search&rescue context) or to be an 
intruder (pursuit-evasion context). The target robot movement is remotely controlled by 
an operator, using a joystick. A WSN node mounted on top sends periodic messages to 
signal its presence, which are then relayed by the WSN to the Control Station with the 
necessary data to trigger localization. The Control Station then computes the target robot 
location, displays it in a virtual scenario and informs the rescuer robot that will 
immediately initiate its mission by moving towards the last known position of the target 
robot. This process is repeated until the rescuer robot is close enough to the target robot. 
Figure 68 illustrates an example scenario. 

 
Figure 68 - Snapshot of the ART-WiSe Search&Rescue Testbed Application 

On the top right corner of Figure 68 it is showed the Control Station software 
Graphical User Interface (GUI). In that software it is presented a virtual representation of 
the testbed scenario as well as a video stream from the Rescuer camera and other 
information regarding the Rescuer status. 
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Figure 69 - The Search&Rescue Testbed in action 

Figure 69 shows a picture from the ART-WiSe Search and Rescue testbed in action.  

8.3 Overview of the testbed localization mechanism 
The developed localization mechanism is based in RSS (Radio Signal Strength) readings 
from the CC2420 transceiver [28] used by the WSN nodes (MICAz). The target robot 
detection mechanism and the subsequent mission dispatching to the rescuer robot are 
illustrated in Figure 70 in the timing diagram of Figure 71.  

 

 

 

 

 

 

 

 

 

Figure 70 - The localization mechanism  

The target robot initiates the process by announcing its presence by sending a 
distress (“help”) broadcast message (2a) at a pre-programmed transmission power and 
timing rate. Every WSN node that receives that distress message stores the received 
RSSI and builds a “Distress Alert message” containing that value and its coordinates and 
sends it to the control station (2b). The Control Station is expected to receive multiple 
“Distress Alert messages” from different nodes. As soon as a sufficient number of 
messages is received (e.g. 7 messages) the target robot’s position is computed based on 
the same algorithm used for the rescuer robot positioning. 
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Figure 71 - Timing diagram of the localization mech anism 

 
The localization mechanism presented a maximum error of approximately 70 cm. We 

did not expect better results for the localization mechanism since there are many sources 
of RSSI variability like transmitter/receiver variability, antenna orientation and multi-
path fading and shadowing. All these reasons may cause errors in the RSSI 
measurements, eventually leading to the computation of a wrong position. The 
localization mechanism is presented in more detail in [87]. 

8.4 Assessing the hidden-node impact in the application 

8.4.1 Changes to the testbed 
In order to assess the impact of the presence of hidden-nodes in the behaviour of the 
testbed, a hidden-node zone (HNZ) was created inside the WSN deployment. Within this 
area, some nodes were programmed as hidden-terminals, by changing the CCA (Clear 
Channel Assessment) Threshold value of the node’s transceiver to a maximum value, so 
that they would not be able to sense the wireless channel as busy. 

The Rescuer robot was not used in the experiments since we focused more on 
assessing the hidden-terminal impact in the tracking capabilities of the application, rather 
than in performing communication to a higher tier (IEEE 802.11 for communicating 
with the Rescuer robot). 

8.4.2 Impact in the localization mechanism 
In order to measure the impact in the application, namely in the localization and target 
tracking mechanism, we carried out two different sets of experiments. Those were to 
measure the necessary time to get a precise localization of the Target Robot when inside 
the HNZ as compared to the normal behaviour (without hidden-nodes).  
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In the first one, we set the WSN nodes that were triggered in the localization 
mechanism (the anchor nodes) as hidden and measured the delay to get a localization 
output. On the second set of experiments we used only one hidden node placed inside the 
HNZ generating traffic at preset rates. This node could not sense the four anchor nodes 
necessary for localization. However, this time the anchor nodes were able to sense each 
other and the extra traffic generating node, thus resulting in a unidirectional link between 
those and the hidden-node. Ten measurements were performed for each traffic value. 

In both tests, one set of experiments was done using the H-NAMe [14] mechanism, 
described in Chapter 5, to demonstrate the feasibility and effectiveness of the mechanism 
in a real application scenario. 
  
Test 1 
For Test 1, we used only one hidden anchor node, then two, three and finally all the four 
anchor nodes as hidden-nodes, leaving in the last case, no link between them. Figure 72 
presents the time necessary to get the localization of the target for each case. 
 

 
Figure 72 - Delay in Localization for Test 1 

With all the four anchor nodes programmed as hidden nodes, the delay to get a 
correct location output was higher than 30 seconds. On the other hand, without any 
hidden-node the time necessary to get the position of the target is less than 1 second 
(approximately 400ms).  

We noticed that with only one hidden-node of the four anchor nodes in the HNZ, 
there was little impact on the delay. This was due to the fact there were always three 
anchor nodes with full connectivity and distance information available (the minimum to 
run the localization algorithm). In fact, when we disconnected one of those three anchor 
nodes, the delay value increased to 5 seconds, since there were only two nodes with full 
connectivity available for performing localization.  

With the H-NAMe mechanism, we assigned one group to each hidden-node. The 
performance improvement was immediately noticed, since it allowed localization in 
approximately one second, even when all of the four anchors used for localization were 
hidden.  
  

Could not get a position result 
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Test 2 
A hidden-node was programmed to generate traffic with pre-programmed inter-arrival 
times. It was then placed inside the HNZ. The target was also placed inside the HNZ and 
the localization mechanism was enabled. Several sets of experiments were made for 
different traffic generation rates (ten for each inter-arrival time). This test is different 
from the previous in the sense that now there is a unidirectional link between the anchor 
nodes and the hidden-node (the anchor nodes can sense the hidden-node but the hidden-
node cannot sense the anchors). Interference was not expected to be very high since the 
anchor nodes could use the IEEE 802.15.4 Slotted CSMA-CA for performing collision 
avoidance, thus escaping collisions with the hidden-node. Nevertheless, some delay was 
still observed as showed in Figure 73. 
 

 

Figure 73 - Delay in localization for test 2 

For low inter-arrival times (around 1 second), there is little impact on the delay since 
the probability of collisions is not very high. Nevertheless, for an inter-arrival rate of one 
second, there were still collisions, leading to a delay around four seconds. However, as 
the inter-arrival time tends to decrease (lower than 100 ms), the impact is highly 
noticeable, taking approximately 20 seconds to get the position of the target. This 
obviously renders the localization mechanism useless and the tracking application fails, 
since it takes too much time to output a target position. On the other hand, when H-
NAMe is used, the delay remains approximately the same (around 1 second), as it is 
completely independent from the hidden-node traffic rate.  

This test was repeated with the target robot in motion (remote controlled) at a 
constant speed. As expected, we observed that for inter-arrival values lower than 800 
milliseconds in the traffic generating node, as the robot was going through the HNZ, the 
Control Station failed to present its current position. As the robot left that zone, the 
Control Station was able to correctly inform the position of the target once again. When 
using H-NAMe, the localization output from the localization mechanism was constant, 
both inside and outside the HNZ zone. 
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8.5 Problems and challenges related to the experimental 
work 
When dealing with actual implementation work, one is probable to face challenges 
related to the technological limitations of the platforms under use. This is particularly 
true when using recent technology like the one available for WSNs.  

In the course of our research work, several experimental scenarios were built for 
testing and validating our theoretical proposals. Some examples include the network 
performance evaluation testbeds described in Chapter 4 and 5 and the one used for the 
worst-case dimensioning of Cluster-Tree ZigBee networks presented in Chapter 6. All of 
these presented some challenges that had to be mitigated to enable the envisaged 
experimental validation. 

During this particular implementation and experimental efforts, some of those 
difficulties were re-encountered, namely in what concerns the behaviour of the hardware 
platforms – the MICAz and TelosB motes. In this section, we summarize some relevant 
problems we faced during this implementation effort and others, already described in 
previous chapters, and how they have been tackled. 

8.5.1 Hardware platforms and debugging 
The MICAz mote requires the use of a hardware board as a programming interface (the 
MIB510), while the TelosB mote features an USB interface, enabling the programming 
via the PC. Both motes provide a debug mechanism by sending data through the serial 
(COM/USB) port and reading it in a communication listener (e.g. ListenRaw, provided 
with the TinyOS distribution, or Windows HyperTerminal). This debugging mechanism 
raises a problem concerning the hardware operation, since the transmission through the 
COM port blocks all the other mote operations. This usually causes synchronization 
problems.  

In order to overcome these local debugging issues and to have a total control over the 
network behaviour and of all transmitted packets, we have been using two different 
network/protocol analysers [37] and [38] already described in detail in Chapter 3.  

8.5.2 Memory constraints 
The mote platforms we have used in the IEEE802.15.4/ZigBee implementation – 
MICAz and TelosbB – are very limited in terms of random access memory (RAM) – 
roughly 4 kB for the former and 10 kB for the latter. The RAM must be sufficient to 
fulfil the requirements of the TinyOS operating system, of the protocol stack and of the 
high level application. In this aspect, the MICAz motes are more constrained than the 
TelosB. Take the example of two TinyOS 2.0 demo applications in order to demonstrate 
the variation in RAM memory usage – the Blink and MultihopOscilloscopeApp 
applications, compiled for both platforms. The first uses approximately 55 bytes and the 
second 3348 bytes of RAM. Besides the RAM memory allocated at compilation time, 
the devices need to have enough free memory for the operating system stack. In our 
TinyOS 2.0 implementation, the memory needed by an application that only uses the 
IEEE 802.15.4 beacon-enabled modes needs approximately 2678 bytes of RAM while 
an application using the ZigBee network layer with the cluster-tree topology needs 
approximately 3224 bytes. Note that it is assumed that the high level applications are 
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very simple and just used for testing purposes and the different buffers used are very 
small. 

8.5.3 CC2420 transceiver limitations 
Another hardware limitation concerns the radio performance of the CC2420 transceiver, 
used by the MICAz and TelosB motes. According to the IEEE 802.15.4 Physical Layer 
specification, the transceiver must have a turnaround time, i.e. the time that the CC2420 
radio transceiver takes to switch from receive mode to transmit mode and vice-versa, of 
12 symbols (192 µs). This is the maximum time bound required to acknowledge 
messages. In fact, the CC2420 has the hardware configuration of auto-acknowledge 
messages but, besides generating several false acknowledgments (messages that are 
acknowledge but not received by the protocol stack) it needs to have the address decode 
functionalities activated. Unfortunately, similarly to several IEEE 802.15.4 compliant 
transceivers, it is not possible to achieve the specified turnaround time. 

For instance, the Chipcon CC2420 can take up to 192 µs just to switch between these 
two modes, leaving no time for data transitions between the MAC sub-layer, the PHY 
layer and the chip transmit memory space. 

In addition, the processing power available in the motes microcontroller revealed to 
be quite limited to comply with the most demanding IEEE 802.14.5 timing constrains, 
especially for small Beacon orders (BO < 3) and Superframe orders (SO <  3). This turns 
these Superframe configurations impossible to deploy, considering that the motes must 
also have availability for processing other tasks. It is reasonable to assume that the 
processing limitations can be easily overcome in the near future with the development of 
new and faster microcontrollers or by a hardware implementation of the protocol stack. 

8.5.4 Timing and synchronization requirements 
The timing requirements of the IEEE 802.15.4 protocol are very demanding. In the 
beacon-enabled mode, all devices (ZRs and ZEDs) must synchronize with their parents 
(ZR or ZC) through beacon frame signalling. If a device loses synchronization it cannot 
operate in the PAN. Moreover, if a node is not properly synchronized, there is a 
possibility of collisions in the GTS slots (when the CAP overlaps the CFP). As 
experienced in our implementation, the loss of synchronization can be caused by 
multiple factors, such as: (1) the processing time of the beacon frame for low BO/SO 
configurations; (2) the mote stack overflow that results in a processing block or a hard 
reset; (3) the unpredictable delay of the wireless communications; and (4) the reduced 
processing capability of the microcontroller in conducting some of the protocol 
maintenance tasks (e.g. creating the beacon frame, the maintenance of GTS expiration 
and indirect transmissions). 

The implementation of the slotted CSMA/CA algorithms is also quite demanding in 
terms of timer accuracy, since the IEEE 802.15.4 protocol defines that each backoff 
period corresponds to 20 symbols (320 µs). A first difficulty in the implementation of 
the beacon-enabled mode was related to the TinyOS management of the hardware timers 
provided by the motes, which do not allow having the exact theoretical values of the BI, 
SD, time slot and backoff period durations as specified by the IEEE 802.15.4 standard. 
This discrepancy, however, does not impact the correct behaviour of the implemented 
protocol; provided that the same mote platforms are used in the experiments (at least as 
ZC and ZRs), it is possible to experience a coherent network behaviour. 
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Figure 74 - Asynchronous events 

The frequency of the asynchronous software events (Figure 74), the hardware events 
and the low microprocessor processing ability may lead to an insufficient processing 
time left to execute remaining protocol and higher level application tasks, as a great 
amount of interrupts have to be processed in short periods of time. 

8.5.5 TinyOS task scheduler 
This was already discussed in greater detail in Chapter 7. The default scheduler of 
TinyOS does not support tasks prioritization and, furthermore, the TinyOS scheduler is 
non pre-emptive. Although, with the aforementioned problem, the protocol stack 
behaves steadily for beacon and superframe orders higher than 3, this constitutes a 
problem for other BO/SO settings. 

8.5.6 Interference between radio channels  
To ensure the reliability of the measurement process, some issues had to be considered, 
namely guaranteeing that the IEEE 802.15.4 physical channel was free from interference 
from IEEE 802.11 networks, which operate at the same frequency range. We have 
experimentally observed that despite the distance to the nearest IEEE 802.11 access 
point being over 10 m, it definitely impact on the performance measurements. The 
channel was often sensed as busy (during the Clear Channel Assessment (CCA) 
procedure) due to IEEE 802.11 transmissions. Hence, we chose an IEEE 802.15.4 
channel outside the IEEE 802.11 frequency spectrum (Channel 26) to perform the 
experimental evaluation. Channel integrity was ensured using a spectrum analyzer. In 
addition, another aspect that was considered was the choice of the SO value to be used in 
our experiments. 

In order to experimentally analyse the behaviour of the protocols, we devised 
scenarios that enabled us to evaluate different network metrics, such as the Network 
Throughput and Probability of Success as a function of the network load, as reported in 
Chapter 4, 5 and 6. Other scenarios, like the one described in this chapter, had the goal 
of demonstrating impact of some parameter in a real application. In general lines, these 
scenarios consisted of one or several nodes programmed to generate packets at the 
application layer with preset inter-arrival times, enabling us to push the necessary traffic 
load into the network. We used the previously referred IEEE 802.15.4 protocol analyzer 
to log the received packets and developed an application to parse the message payload, 
which embedded relevant performance information retrieved from the nodes in order to 
compute the required metrics.  
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Obviously, it is important to isolate as much as possible the testbed scenario from 
external factor that may impact in the 

One requirement of the performance evaluation was to achieve high traffic loads in 
the network, namely pushing well above 100% of the network capacity. We immediately 
observed that it was not only difficult to get a consistent behaviour of the Throughput 
metric but also to get high offered loads. Moreover, it was hard to ensure the stability of 
the network when the nodes were generating packets with very low inter-arrival times.

After performing several assessments, we reached the conclusion that this behaviour 
was mostly related to three factors: (1) the interference from the Wi-Fi networks around 

Figure 76); (2) TinyOS-related constrains; and (3) others related to 
the node’s scarce processing capability. 

The interference between IEEE 802.11 and 802.15.4 radio channels, confirmed using 
a spectrum analyser, had unpredictable effects on the results. We observed that the 
interference of IEEE 802.11 networks often generated collisions with data/beacon 
frames. This effect, lead to data corruption and network de-synchronization. Moreover, it 
also had implications on the amount of traffic sent to the network because in the IEEE 
802.15.4 slotted CSMA/CA protocol, the medium was often sensed as busy (during the 
Clear Channel Assessment (CCA)), causing deference and failed transmissi
obviously affected the behaviour of the network since it did not allow reaching the 
desired traffic loads. We overcame the interference problem by using the only IEEE 
802.15.4 channel (Channel 26 in the 2480 MHz frequency band) that is completely
outside the IEEE 802.11 frequency spectrum as depicted in Figure 75. 

 

Figure 75 - IEEE802.15.4 and IEEE 802.11 channels  
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Moreover, it 
also had implications on the amount of traffic sent to the network because in the IEEE 
802.15.4 slotted CSMA/CA protocol, the medium was often sensed as busy (during the 
Clear Channel Assessment (CCA)), causing deference and failed transmissions. This 
obviously affected the behaviour of the network since it did not allow reaching the 
desired traffic loads. We overcame the interference problem by using the only IEEE 
802.15.4 channel (Channel 26 in the 2480 MHz frequency band) that is completely 

interference must be taken into consideration for the reliable 
deployment of ZigBee networks operating in the 2.4 GHz frequency. Nevertheless, 
besides the interference problem, we have also identified other sources of 
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Figure 76 - WiFi networks around the Hands-on lab 

As already discussed in Section 3, TinyOS imposes several limitation that influence 
the behaviour of the protocol stack, namely on the synchronization. We have observed 
that when nodes used a very low inter-arrival time (in the order of 50 packets per 
second) the de-synchronization was a concern, mainly due to the high amount of tasks 
posted to generate the required offered load. To mitigate this problem, we programmed 
the nodes to generate packets only during the active portion of the Superframe, trying to 
guarantee that the beacon frame would be parsed immediately upon the reception. 
Nevertheless, when using a full duty cycle the problem remained. We have solved it by 
using a new timer that fires a few milliseconds before the end of the Superframe, 
stopping all the packet generation and leaving the nodes ready to process the beacon. 

8.5.7 RSSI-based localization inaccuracy 
In the Search&Rescue application described in this chapter, a rescuer robot is supposed 
to track and reach, in the minimum amount of time, a steady or moving target (person or 
robot), using a wireless sensor network for tracking and localization. In this context we 
wanted to develop a simple but effective localization mechanism, relying as much as 
possible on COTS technologies and taking advantage of the RSSI indicator available 
directly from the CC2420 transceiver, using the RSSI values as the source for distance 
estimation.  

We immediately observed that these measurements were highly sensitive to ambient 
conditions. The proximity to metal and walls highly increased the number of reflections 
leading to non-consistent RSSI readings. Moreover, the RSSI value was not linear with 
the distance (Figure 77) and it varied with different mote antenna orientations. This 
means that it was probable to find several different RSSI readings at the same distance. 
To overcome that problem, several experiments were carried out at different distances, 
transmission powers and antenna orientations in an attempt to get a consistent set of 
values for different distances ([87], [88]). 

After these experiments, it became possible to establish a correspondence between 
discrete range levels and the spread of RSSI values encountered for that same range. 
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Figure 77 - RSSI versus Distance [88] 

This enabled us to engineer a simple RSSI-based localization mechanism with 
approximately 60 cm inaccuracy, which was acceptable for the envisaged application. 

8.6 Concluding Remarks 
In this chapter we presented a deployment of a WSN in a real scenario (a target tracking 
application), aiming at demonstrating the impact of the hidden-node problem and to 
prove the effectiveness of the H-NAMe mechanism.  

We showed that this issue greatly affects an application of this kind, by increasing 
the message delays (through multiple collisions), thus reducing the effectiveness of the 
localization mechanism in the proximity of hidden-nodes. In fact, from our tests, we 
showed that having two out of four anchor nodes (used in the localization mechanism) 
hidden, is enough to cause a significant degradation of the target localization process, 
taking up to five seconds to get a result.  

We also evaluated the impact of having only one hidden-node placed inside the 
network generating traffic at different rates. We proved that one node, with a medium 
traffic generation rate (800 milliseconds), would cause problems to the localization 
process. 

We also reported several problems and challenges emerging from our experimental 
work on the IEEE 802.15.4/ZigBee protocol stack. The hardware platforms under use – 
MICAz and TelosB – seem to be too limited for the demanding requirements of ZigBee 
cluster-tree networks, where synchronization depends on the distributed transmission of 
beacon frames. This also results from the limitations of TinyOS to tackle this demanding 
protocol behaviour. Thus, the motivation to port the Open-ZB stack to ERIKA, a real-
time operating system, already described in Chapter 7. 



 

 

Chapter 9  
General Conclusions and Future Work 

This chapter reviews the research objectives of this Thesis and 
summarises its major results, highlighting how the research 
contributions fulfilled the original research objectives. Finally, some 
remarks about our future work are also presented. 

 
 
The ubiquity and pervasiveness of future large-scale distributed systems will lead to a 
very tight integration and interaction between embedded computing devices and the 
physical environment, via sensing and actuating actions. Such cyber-physical systems 
require a rethinking in the usual computing and networking concepts, and given that the 
computing entities closely interact with their environment, timeliness is of increasing 
importance. 

We believe that relying on standard and commercial off-the-shelf (COTS) 
technologies will speed up the development of real applications in these domains, since 
this choice usually has a significant impact in reducing development and maintenance 
costs, increasing interoperability, thus speeding up the utilization of these technologies 
by developers and end-users. 

This Thesis addressed the use of standard protocols combined with COTS 
technologies, as a baseline to enable Wireless Sensor Network (WSN) infrastructures 
capable of supporting the QoS requirements (e.g. timeliness, energy-efficiency) that 
future large-scale embedded computing systems will impose.  

In this context, we have been using the use of the IEEE 802.15.4 and ZigBee 
communication protocols for WSNs. ZigBee supports several network topologies (star, 
mesh and cluster-tree), security mechanisms and application profiles. IEEE 802.15.4 
allows dynamically adjustable duty-cycles per cluster, enabling energy-efficiency (nodes 
can sleep up to almost 100% of the time). The Medium Access Control (MAC) protocol 
is very flexible, enabling the differentiation between real-time traffic (contention-free; 
bandwidth/delay guarantees) through the GTS (Guaranteed Time Slot) mechanism, and 
best-effort traffic (contention-access) through the Slotted CSMA/CA (Carrier Sense 
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Multiple Access with Collision Avoidance) mechanism. There has been an exponential 
growth in available ZigBee technology, although the cluster-tree network solution is not 
commercially supported. 

In this Thesis, we started by evaluating the network performance of the IEEE 
802.15.4 Slotted CSMA/CA mechanism for different parameter settings, both through 
simulation and experimentally (Chapter 4). We studied the impact of parameters like 
Beacon Order (BO), or the initialization value of the Backoff Exponent macMinBE in the 
Network Throughput and Probability of Successful transmissions, which allowed us to 
gain a better understanding of the performance of the Slotted CSMA/CA mechanism. 

Because the hidden-node problem has such a great impact in WSN performance, both 
in terms of throughput, transfer delay and energy-efficiency, we have implemented, 
tested and validated H-NAMe, a hidden-node avoidance mechanism that was previously 
proposed. This work was addressed in Chapter 5 and its effectiveness was demonstrated 
in a real application scenario - a target tracking application - as presented in Chapter 8.   

In Chapter 6, a methodology for modelling cluster-tree WSNs and computing the 
worst case end-to-end delays, buffering and bandwidth requirements was tested and 
validated experimentally. This work was of paramount importance to understand the 
behaviour of WSNs under worst-case conditions and to determine the pessimism of the 
theoretical worst-case analysis. 

In our experimental work, some technological constraints were identified, namely 
related to hardware/software and to the Open-ZB implementation over TinyOS. This 
issue was addressed in Chapter 8, and a new implementation effort was made in porting 
the Open-ZB IEEE 802.15.4/ZigBee protocol stack to ERIKA, a real-time operating 
system, as described in Chapter 7. This new implementation presented some interesting 
performance behaviour when compared with the TinyOS–based implementation.  

In summary, we confirmed the initial hypothesis of this Thesis, i.e., the use of IEEE 
802.15.4 and ZigBee set of standard protocols as a baseline, combined with commercial 
hardware/software platforms and some add-ons seem to be able to fulfil improve the 
timeliness and energy-efficiency requirements that WSNs may impose. 

Future work includes the provision of mobility and fault-tolerance support to ZigBee 
WSNs. Regarding the IEEE 802.15.4/ZigBee Open-ZB stack we aim at continuing the 
effort of porting the implementation to the ERIKA real-time operating system, and 
eventually to other operating systems (e.g. nano-RK) and hardware platforms (e.g. 
iMote2).  
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