
ON THE USE OF IEEE 802.15.4/ZIGBEE FOR TIME-
-SENSITIVE WIRELESS SENSOR NETWORK APPLICATIONS

Ricardo Augusto Rodrigues da Silva Severino
Outubro de 2008

ISEP

Polytechnic Institute of Porto
School of Engineering

On the use of IEEE 802.15.4/ZigBee
for Time-Sensitive Wireless Sensor

Network Applications

Ricardo Augusto Rodrigues da Silva Severino

A dissertation submitted in partial fulfilment of the specified requirements for
the degree of Master in Electrical and Computer Engineering

Supervision: Dr. Mário Alves
Co-Supervision: Dr. Anis Koubâa

Porto, October, 2008

ii

iii

Acknowledgements

First of all I would like to express my gratitude to my supervisor, Mário Alves, for his
outstanding supervision, counsel, advice, support, inspiration, patience, and for always
being available during the course of this work. I would also like to thank my
co-supervisor, Anis Koubâa, for his interest in my work and guidance throught the
development process of this Thesis.

I want to thank all the people in the CISTER/IPP-HURRAY! Research Unit, at the

School of Engineering of the Polytechnic Institute of Porto for their support and
enthusiasm that makes working in IPP-HURRAY! very stimulating and challenging. It is
impressive how so few can do so much.

A special thanks goes also to Petr Jurcik, an exceptional researcher, and to the guys I

shared the Hands-on lab with for so long - André Cunha, Bruno Brito, Emmanuel
Lomba, and Ricardo Gomes - for their support and for the great moments we spent
together.

I would also like to thank my parents for the support they provided me through my

entire life and to my friends for their encouragement.

Last but not least, a very special thanks to Rute, without whose love, encouragement

and support, I would not have finished this Thesis.

iv

v

Abstract
Recent advancements in information and communication technologies are paving the

way for new paradigms in embedded computing systems. This, allied with an increasing
eagerness for monitoring and controlling everything, everywhere, is pushing forward the
design of new Wireless Sensor Network (WSN) infrastructures that will tightly interact
with the physical environment, in a ubiquitous and pervasive fashion.

Such cyber-physical systems require a rethinking of the usual computing and
networking concepts, and given that the computing entities closely interact with their
environment, timeliness is of increasing importance.

This Thesis addresses the use of standard protocols, particularly IEEE 802.15.4 and
ZigBee, combined with commercial technologies as a baseline to enable WSN
infrastructures capable of supporting the Quality of Service (QoS) requirements
(specially timeliness and system lifetime) that future large-scale networked embedded
systems will impose.

With this purpose, in this Thesis we start by evaluating the network performance of
the IEEE 802.15.4 Slotted CSMA/CA (Carrier Sense Multiple Access with Collision
Avoidance) mechanism for different parameter settings, both through simulation and
through an experimental testbed.

In order to improve the performance of these networks (e.g. throughput, energy-
efficiency, message delay) against the hidden-terminal problem, a mechanism to mitigate
it was implemented and experimentally validated. The effectiveness of this mechanism
was also demonstrated in a real application scenario, featuring a target tracking
application.

A methodology for modelling cluster-tree WSNs and computing the worst-case end-
to-end delays, buffering and bandwidth requirements was tested and validated
experimentally. This work is of paramount importance to understand the behaviour of
WSNs under worst-case conditions and also to make the appropriate network settings.

Our experimental work enabled us to identify a number of technological constrains,
namely related to hardware/software and to the Open-ZB implementation in TinyOS. In
this line, a new implementation effort was triggered to port the Open-ZB IEEE
802.15.4/ZigBee protocol stack to the ERIKA real-time operating system. This
implementation was validated experimentally and its behaviour compared with the
TinyOS–based implementation.

Keywords:
Wireless Sensor Networks; Cluster-Tree WSN; Real-Time Communications; Quality of
Service; IEEE 802.15.4; ZigBee; TinyOS; ERIKA.

vi

vii

Resumo
Os últimos avanços nas tecnologias de informação e comunicação (ICTs) estão a abrir
caminho para novos paradigmas de sistemas computacionais embebidos. Este facto,
aliado à tendência crescente em monitorizar e controlar tudo, em qualquer lugar, está a
alimentar o desenvolvimento de novas infra-estruturas de Redes de Sensores Sem Fios
(WSNs), que irão interagir intimamente com o mundo físico de uma forma ubíqua.

Este género de sistemas ciber-físicos de grande escala, requer uma reflexão sobre os
conceitos de redes e de computação tradicionais, e tendo em conta a proximidade que
estas entidades partilham com ambiente envolvente, o seu comportamento temporal é de
acrescida importância.

Esta Tese endereça a utilização de protocolos normalizados, em particular do IEEE
802.15.4 e ZigBee em conjunto com tecnologias comerciais, para desenvolver infra-
estruturas WSN capazes de responder aos requisitos de Qualidade de Serviço (QoS)
(especialmente em termos de comportamento temporal e tempo de vida do sistema), que
os futuros sistemas embebidos de grande escala deverão exigir.

Com este propósito, nesta Tese começamos por analisar a performance do
mecanismo de Slotted CSMA/CA (Carrier Sense Multiple Access with Collision
Avoidance) do IEEE 802.15.4 para diferentes parâmetros, através de simulação e
experimentalmente.

De modo a melhorar a performance destas redes (ex. throughput, eficiência
energética, atrasos) em cenários que contenham nós escondidos (hidden-nodes), foi
implementado e validado experimentalmente um mecanismo para eliminar este
problema. A eficácia deste mecanismo foi também demonstrada num cenário
aplicacional real.

Foi testada e validada uma metodologia para modelizar uma WSN em cluster-tree e
calcular os piores atrasos das mensagens, necessidades de buffering e de largura de
banda. Este trabalho foi de grande importância para compreender o comportamento deste
tipo de redes para condições de utilização limite e para as configurar a priori.

O nosso trabalho experimental permitiu identificar uma série de limitações
tecnológicas, nomeadamente relacionadas com hardware/software e outras relacionadas
com a implementação do Open-ZB em TinyOS. Isto desencadeou a migração da pilha
protocolar IEEE 802.15.4/ZigBee Open-ZB para o ERIKA, um sistema operativo de
tempo-real. Esta implementação foi validada experimentalmente e o seu comportamento
comparado com o da implementação baseada em TinyOS.

Palavras-Chave:

Redes de Sensores Sem Fios; Cluster-Tree WSN; Comunicações em tempo-real;
Qualidade de Serviço; IEEE 802.15.4; ZigBee; TinyOS; ERIKA.

viii

ix

Table of Contents
Acknowledgements .. iii
Abstract ... v
Resumo ... vii
Table of Contents .. ix
List of Figures ... xi
List of Tables .. xv
List of Acronyms .. xvii
Chapter 1 - Overview .. 19

1.1 Introduction .. 19

1.2 Research Context ... 21

1.3 Research Objectives ... 21

1.4 Research Contributions .. 21

1.5 Structure of this Thesis ... 22

Chapter 2 - Overview of IEEE 802.15.4 and ZigBee .. 23
2.1 General Aspects ... 23

2.2 ZigBee Network Layer ... 27

2.3 IEEE 802.15.4 Protocol Standard .. 33

Chapter 3 - Technological Platforms and Tools ... 45
3.1 Mote Platforms – The MICAz and TelosB .. 45

3.2 The FLEX Board .. 47

3.3 Programming Interfaces ... 47

3.4 IEEE 802.15.4/ZigBee Protocol Analysers .. 48

3.5 TinyOS and ERIKA Operating Systems .. 51

3.6 Open-ZB Toolset .. 54

Chapter 4 - On the Performance Evaluation of the IEEE 802.15.4 Slotted
CSMA/CA Mechanism ... 61

4.1 Introduction .. 61

4.2 Experimental and Simulation Testbeds .. 62

4.3 Performance Analysis .. 64

4.4 Concluding remarks ... 68

Chapter 5 - On a Hidden-Node Avoidance Mechanism .. 69

5.1 Introduction .. 69

5.2 The H-NAMe mechanism .. 71

x

5.3 H-NAMe in IEEE 802.15.4/ZigBee ... 78

5.4 Experimental Evaluation .. 80

5.5 Concluding remarks ... 84

Chapter 6 - Real-Time Communications over Cluster-Tree Wireless Sensor
Networks .. 85

6.1 Introduction .. 85

6.2 Background on Network Calculus ... 86

6.3 System Model .. 87

6.4 IEEE 802.15.4/ZigBee Cluster-Tree WSN Setup .. 91

6.5 Experimental Evaluation .. 91

6.6 Concluding remarks ... 99

Chapter 7 - ERIKA and Open-ZB: a Toolset for Real-Time Wireless Networked
Applications ... 101

7.1 Introduction .. 101

7.2 Software Implementation ... 102

7.3 Experimental work ... 106

7.4 Comparative performance results ... 107

7.5 Concluding remarks ... 110

Chapter 8 - Hands-on Work over a Real Application Scenario 111

8.1 Introduction .. 111

8.2 Snapshot of the ART-WiSe Search & Rescue testbed application 112

8.3 Overview of the testbed localization mechanism ... 113

8.4 Assessing the hidden-node impact in the application ... 114

8.5 Problems and challenges related to the experimental work 117

8.6 Concluding Remarks .. 122

Chapter 9 - General Conclusions and Future Work .. 123
References .. 125

xi

List of Figures
Figure 1 - ZigBee architecture [7] .. 24

Figure 2 - ZigBee network topologies .. 25

Figure 3 - Network Layer reference model [7] ... 27

Figure 4 - Address assignment scheme example .. 29

Figure 5 - ZigBee Coordinator addressing scheme (decimal values) 29

Figure 6 - Operating frequencies and bands [24] .. 34

Figure 7 - IEEE 802.15.4 Operational Modes .. 36

Figure 8 - IEEE 802.15.4 Superframe Structure [24] ... 36

Figure 9 - Association mechanism example ... 38

Figure 10 - Dissassociation mechanism example ... 39

Figure 11 - GTS allocation message sequence diagram [24] 39

Figure 12 - CFP defragmentation upon a GTS deallocations [24] 40

Figure 13 - The Slotted CSMA/CA Mechanism [24] ... 41

Figure 14 - The Un-slotted CSMA/CA mechanism [24] 42

Figure 15 - Inter-frame spacing [24] ... 42

Figure 16 - Indirect transmission example .. 43

Figure 17 - Micaz mote and the block diagram [25] ... 46

Figure 18 - TelosB mote and the block diagram [26] ... 46

Figure 19 - The FLEX board [30] ... 47

Figure 20 - Interface Boards - MIB510, MIB520 and MIB600 48

Figure 21 - Overview of the Chipcon IEEE802.15.4/ZigBee Packet Sniffer 49

Figure 22 - Overview Chipcon SmartRF Studio [39] ... 50

Figure 23 - Overview of Daintree Network Analyser [38] 50

Figure 24 - Arrangement of the components and their wiring [47] 53

Figure 25 - Protocol stack software architecture .. 56

Figure 26 - TinyOS implementation diagram [62] ... 57

Figure 27 - The IEEE 802.15.4 [65] ... 59

xii

Figure 28 - Simulation Model setup ... 62

Figure 29 - The CSMA/CA performance evaluation testbed.............................. 63

Figure 30 - Network Throughput for different BO ... 64

Figure 31 - Transmission deference problem ... 65

Figure 32 - Probability of Success for different BO ... 65

Figure 33 - Experimental vs Simulation(BO=SO=7 and BO=SO=1) 66

Figure 34 - Impact of macMinBE value in the Network Throughput 67

Figure 35 - Offered Load for different macMinBE values 68

Figure 36 - A hidden-node collision ... 70

Figure 37 - Hidden-node impact on network throughput.................................... 70

Figure 38 - Network model ... 72

Figure 39 - Intra-cluster grouping mechanism .. 73

Figure 40 - Intra-cluster grouping message sequence chart 73

Figure 41 - Maximum number of groups in a cluster assuming bi-directional

links and circular radio range .. 76

Figure 42 - Group assignment algorithm .. 77

Figure 43 - CAP, GAP and CFP in the Superframe .. 79

Figure 44 - GAP specification field of a beacon frame 79

Figure 45 - Experimental testbed .. 81

Figure 46 - Groups allocation in the superframe .. 81

Figure 47 - Packet analyzer capture of a group join ... 82

Figure 48 - Experimental performance results .. 83

Figure 49 -The basic system model of Network Calculus 86

Figure 50 - Example of input R(t) and output R*(t) functions constrained by (b,

r) arrival curve α(t) and rate-latency service curve β(t), respectively. 87

Figure 51 - The cluster-tree topology and data flow models 89

Figure 52 - The test-bed deployment for Hsink =1 ... 92

Figure 53 - The GUI of the MATLAB analytical model 93

Figure 54 - The sensory traffic generation .. 94

xiii

Figure 55 - The worst-case buffer requirements per router as a function of the

depth and sink position ... 95

Figure 56 - The theoretical vs. experimental buffer requirements 95

Figure 57 - Theoretical vs. experimental data traffic .. 96

Figure 58 - Theoretical vs Experimental delay bounds 97

Figure 59 - The theoretical worst-case and experimental maximum end-to-end

delays as a function of duty cycle for Hsink = 0 (lifetime of a WSN) 99

Figure 60 – Stack implementation layered architecture 102

Figure 61 - PHY Layer reference model ... 103

Figure 62 - MAC layer reference model ... 104

Figure 63 - Beacon processing in ERIKA .. 105

Figure 64 - Beacon inter-arrival time at the sniffer board 106

Figure 65 - Guaranteed Time Slots allocated to Device 1 and 2 to inject packets

without contention access ... 108

Figure 66 - Throughput using ERIKA+FLEX (Left) and Packet delivery ration

using ERIKA+FLEX (Right), at different microcontroller speeds 109

Figure 67 – Throughput using ERIKA+FLEX (left) and Packet delivery ratio

using ERIKA+FLEX .. 109

Figure 68 - Snapshot of the ART-WiSe Search&Rescue Testbed Application 112

Figure 69 - The Search&Rescue Testbed in action ... 113

Figure 70 - The localization mechanism ... 113

Figure 71 - Timing diagram of the localization mechanism 114

Figure 72 - Delay in Localization for Test 1 ... 115

Figure 73 - Delay in localization for test 2 ... 116

Figure 74 - Asynchronous events ... 119

Figure 75 - IEEE802.15.4 and IEEE 802.11 channels 120

Figure 76 - WiFi networks around the Hands-on lab .. 121

Figure 77 - RSSI versus Distance [88] ... 122

xiv

xv

List of Tables
Table 1 – ZigBee Mesh vs. Cluster-Tree .. 26

Table 2 - Cskip example values .. 32

Table 3 - Operating Systems for resource constrained devices 52

Table 4 - Functionalities of the implemented protocol stack components [62] .. 57

Table 5 - Delay bounds: theoretical vs. experimental results 96

Table 6 – Delay bounds: theoretical vs. experimental results 98

Table 7 - Memory buffers and ERIKA resources set as guards 105

Table 8 - Observed time divergence from nominal value 107

xvi

xvii

List of Acronyms
AODV Ad hoc On Demand Distance Vector
APL Application Layer
APS Application Support Sublayer
BE Backoff Exponent
BI Beacon Interval
BO Beacon Order
CAP Contention Access Period
CCA Clear Channel Assessment
CFP Contention Free Period
CID Cluster Identifier
CLH Cluster Head
COTS Commercial-off-the-shelf
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
CW Contention Window (length)
DSSS Direct Sequence Spread Spectrum
ED Energy Detection
FCS Frame Check Sequence
FFD Full Function Device
GTS Guaranteed Time Slot
IFS Interframe Spacing
LAN Local Area Network
LIFS Long Interframe Spacing
LQI link quality indication
LR-WPAN Low Rate-Wireless Personal Area Network
MAC Medium Access Control
NB Number of Backoff (periods)
NWK ZigBee Network layer
NWK Network Layer
OSI Open Systems Interconnection
PAN Personal Area Network
PHY Physical Layer
PD-SAP PHY data service access point
PLME Physical Layer Management Entity
PLME-SAP Physical Layer Management Entity-Service Access
 Point
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
RFD Reduced Function Device
RSSI Received Signal Strength Indication
RX Receive or Receiver
SAP Service Access Point
SD Superframe Duration
SFD Start-of-Frame Delimiter
SIFS Short Interframe Spacing

xviii

SO Superframe Order
TDBS Time Division Beacon Scheduling
TRX Transceiver
TX Transmit or Transmitter
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network
ZC ZigBee Coordinator
ZDO ZigBee Device Objects
ZED ZigBee End Device
ZG ZigBee Gateway
ZR ZigBee Router

Chapter 1
Overview

This Thesis addresses the use of IEEE 802.15.4/ZigBee as federating
communication protocols for time-sensitive Wireless Sensor Network
applications. Their performance, timeliness and reliability features are
assessed and new mechanisms proposed for engineering large-scale
embedded computing applications with stringent Quality of Service
(QoS) requirements. This chapter overviews the research context and
objectives and also outlines the major contributions of this work.

1.1 Introduction
The widespread use of laptops, cell phones, PDAs, GPS receivers, RFID, and intelligent
electronics in the post-PC era, represents a gigantic step towards an increasing
miniaturization and ubiquity of modern embedded systems. With it, computing devices
have become cheaper, more mobile, more distributed, and more pervasive in everyday
life, creating an eagerness for monitoring and controlling everything, everywhere [1].
These advancements in information and communication technology (namely on
memories, batteries, energy scavenging techniques and hardware design), and the
necessity of large-scale communication infrastructures, triggered the birth of the
Wireless Sensor Network (WSN) paradigm.

In the upcoming years, wireless communication will be embedded in everyday
objects, such as clothes, gadgets, toys, home appliances, food carts to cars, bridges,
roads, farm lands, buildings, animals and people. The integration of a wireless module is
not just enabling a way to communicate but it is a means to make objects smarter and
granting those new abilities [2]. Wireless Sensor Networks will enable a wide range of
new applications and usages like building automation (e.g. security, HVAC, lighting
control, access control), consumer electronics (e.g. TV/VCR/DVD/CD remote control),
industrial automation (e.g. asset management, process control, environmental control,

Chapter 1 – Overview

20

energy management) and personal health care (e.g. body sensor networks). This
computing ubiquity will help improving the quality of life and change the way
individuals perceive the world.

However, for this to become a reality, many new problems and challenges must be
overcome in WSNs as their paradigm differs from traditional wireless networks. There is
the need for low cost devices enabling large-scale networked embedded systems (as
there can be hundreds or thousands of nodes scattered in large regions) and energy
requirements that impose low communication rates and ranges and low duty cycles.
Some of the most important challenges in WSNs are related to energy-efficiency,
scalability, routing, mobility, reliability, timeliness, security, clustering, localization and
synchronization.

In fact, while some of the applications enumerated previously do not pose stringent
timing requirements (environmental monitoring or precision agriculture), others, like
industrial automation and process control [3-5], will rely heavily on the timing behaviour
of the overall system (applications, operating system and networks). Moreover, the
ubiquity and pervasiveness of future distributed systems will lead to a very tight
integration and interaction between embedded computing devices and the physical
environment, via sensing and actuating actions. Such cyber-physical systems require a
rethinking in the usual computing and networking concepts, and given that the
computing entities closely interact with their environment, timeliness is of increasing
importance.

This Thesis addresses the use of standard protocols combined with Commercial-off-
the-shelf (COTS) technologies as a baseline to enable WSN infrastructures capable of
supporting the Quality of Service (QoS) requirements that future large-scale embedded
computing systems will impose.

There is a wide range of wireless communication protocol standards for a wide range
of applications (e.g. voice, video and general data communications), each of them setting
a compromise between bit rate and radio coverage, according to their target application
scenarios (personal, local, metropolitan and wide). However there is a need for
communication protocols that meet the needs of WSN applications. In general, WSNs do
not impose stringent requirements in terms of bandwidth, but they require low energy
consumption so that network/nodes lifetime is prolonged as much as possible. In fact,
meeting energy requirements is most often the main goal of WSNs protocols and
technologies.

The joint efforts of the IEEE 802.15.4 Task Group [6] and the ZigBee Alliance [7]
have ended up with the specification of a standard protocol stack for Low-Rate Wireless
Personal Area Networks (LR-WPANs), an enabling technology for Wireless Sensor
Networks (WSNs) [8-9]. Therefore, we aim at using the IEEE 802.15.4 and ZigBee
protocols as a baseline, and COTS technologies, like the TinyOS and ERIKA operating
systems, the MICAz and TelosB motes, and the FLEX hardware platforms.

Traditionally, the use of COTS technologies leads to easier, faster and widespread
development, deployment and adoption. Our feeling is that the same case applies to the
WSN area which motivates the work in this Thesis.

Chapter 1 – Overview

21

1.2 Research Context
This work has been developed within the context of the ART-WiSE (Architecture for
Real-Time communications in Wireless Sensor Networks) research framework [10-12]
aiming at the specification of a scalable two-tiered communication architecture for
improving the timing and reliability behaviour of WSNs. One of the major goals in
ART-WiSe is to rely as far as possible on existing standard communication protocols
and commercial-off-the-shelf (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1
and IEEE 802.11 for Tier 2. This Thesis was developed in synergy with this research
framework.

1.3 Research Objectives
The main objective of this Thesis is to assess the adequateness of current standard and
COTS technology, for enabling large-scale wireless sensor network applications with
QoS requirements. The hypothesis is that this is possible by using the IEEE 802.15.4 and
ZigBee protocols combined with commercial hardware/software platforms.

This Thesis addresses the performance analysis of these protocols as well as of some
additional mechanisms that enable QoS improvement.

1.4 Research Contributions
The main research contributions of this Thesis are1:

− Performance evaluation of the IEEE 802.15.4 Slotted CSMA-CA mechanism,
comparing experimental results with the ones obtained from the IEEE 802.15.4
simulation model, as proposed in [13] and presented in Chapter 4.

− Collaboration in the design, implementation and performance evaluation of a
hidden-node avoidance mechanism for Wireless Sensor Networks (H-NAMe).
This work was proposed in [14] and is presented in Chapter 5.

− Collaboration in the design, implementation and experimental analysis of the
worst-case dimensioning of ZigBee Cluster-tree networks. This work was
proposed in [15], [16], and is described in Chapter 6.

− Implementation of the IEEE 802.15.4/ZigBee protocol stack over the ERIKA
real-time operating system, as proposed in [17] and presented in Chapter 7.

− Contribution to the Open-ZB protocol stack implementation [18] by
implementing the GTS mechanism for ZigBee Cluster-tree networks [19].

− Collaboration with the TinyOS Network Protocol Working Group [20] to
implement a ZigBee compliant stack for TinyOS 2.0.

− Identification of a set of hardware and software problems and limitations of the
Open-ZB protocol stack implementation over TinyOS for the TelosB and
MICAz motes, as proposed in [21] and described in Chapter 8.

1 All publications related to this Thesis are available at http://www.hurray.isep.ipp.pt/

Chapter 1 – Overview

22

1.5 Structure of this Thesis
The remainder of this Thesis is structured as follows. Chapter 2 provides an overview of
the most relevant aspects of the IEEE 802.15.4 and ZigBee protocols in the context of
this Thesis. Chapter 3 presents the technological context and the development tools
employed throughout this Thesis, including hardware platforms, operating systems,
simulation tools, network analysers, and the Open-ZB protocol stack.

The performance evaluation of the IEEE 802.15.4 Slotted CSMA/CA mechanism is
addressed in Chapter 4, comparing experimental and simulation results. This chapter
presents the impact of some MAC parameters in the Network Throughput and
Probability of Successful transmissions.

Chapter 5 presents a hidden-node avoidance mechanism and describes how it was
instantiated in ZigBee and validated in an experimental testbed.

Chapter 6 addresses the test and validation of a methodology for modelling cluster-
tree WSNs, for computing the worst-case end-to-end delays, buffering and bandwidth
requirements across any source-destination path in the cluster-tree.

A software implementation of the Open-ZB IEEE 802.154/ZigBee protocol stack
over the ERIKA real-time operating system is presented in Chapter 7, along with some
experimental results based on real hardware platforms.

Chapter 8 presents an experimental analysis of the impact of the hidden-node
problem over a target tracking application scenario. Some lessons learned from our
knowledge on experimental work are also addressed in this chapter.

The Thesis concludes with Chapter 9, which summarizes the presented contributions
and identifies topics for future research.

Chapter 2
Overview of IEEE 802.15.4 and ZigBee

This chapter presents the most important features of the IEEE 802.15.4
protocol and ZigBee protocols. It particularly focuses on the IEEE
802.15.4 Data Link and ZigBee Network Layers, which are the most
relevant in the context of this Thesis.

2.1 General Aspects
ZigBee defines two layers of the OSI (Open Systems Interconnection) model: the
Application Layer (APL) and the Network Layer (NWL), as depicted in Figure 1. Each
layer performs a specific set of services for the layer above. The different layers
communicate through Service Access Points (SAP’s). These SAPs enclose two types of
entities: (1) a data entity (NLDE-SAP) to provide data transmission service and (2) a
management entity (NLME-SAP) providing all the management services between
layers.

The ZDO is also responsible for communicating information about itself and its
provided services. The ZDO is located in EndPoint 0. The Application Objects are the
manufacturer’s applications running on top of the ZigBee protocol stack. These objects,
located between Endpoints 1 to 240, adhere to a given profile approved by the ZigBee
Alliance. The address of the device and the EndPoints available provide a uniform way
of addressing individual application objects in the ZigBee network. The set of ZDOs,
their configuration and functionalities form a ZigBee profile. The ZigBee profiles intent
to be a uniform representation of common application scenarios. Currently, the ZigBee
available profiles include the Network Specific (stack identifier 0); Home Controls
(stack identifier 1); Building Automation (stack identifier 2) and Plant Control (stack
identifier 3).

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

24

Figure 1 - ZigBee architecture [7]

The ZigBee Network Layer (NWK) is responsible for Network management

procedures (e.g. nodes joining and leaving the network), security and routing. It also
encloses the neighbour tables and the storage of related information. The NWK Layer
provides one set of interfaces, the Network Layer Data Entity Service Access Point
(NLDE-SAP) used to exchange data with the APS.

IEEE 802.15.4/ZigBee devices can be classified according to their functionalities:
Full Function Devices (FFD) implement the full IEEE 802.15.4/ZigBee protocol stack;
Reduced Function Devices (RFD) implement a subset of the protocol stack.

Regarding the devices role in the network, ZigBee defines 3 types of devices:
− ZigBee Coordinator (ZC): One for each ZigBee Network; Initiates and

configures Network formation; Acts as an IEEE 802.15.4 Personal Area
Network (PAN) Coordinator; Acts as ZigBee Router (ZR) once the network is
formed; Is a Full Functional Device (FFD) – implements the full protocol
stack; If the network is operating in beacon-enabled mode, the ZC will send
periodic beacon frames that will serve to synchronize the rest of the nodes. In a
Cluster-Tree network all ZR will receive beacon from their parents and send
their own beacons to synchronize nodes belonging to their clusters

− ZigBee Router (ZR): Participates in multi-hop routing of messages in mesh and
Cluster-Tree networks; Associates with ZC or with previously associated ZR in
Cluster-Tree topologies; Acts as an IEEE 802.15.4 PAN Coordinator; Is a Full
Functional Device (FFD) – implements the full protocol stack.

− ZigBee End Device (ZED): Does not allow other devices to associate with it;
Does not participate in routing; It is just a sensor/actuator node; Can be a
Reduced Function Device (RFD) – implementing a reduced subset of the
protocol stack.

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

25

Throughout this Thesis, the names of the devices and their acronyms are used
interchangeably.

ZigBee/IEEE 802.15.4 enables three network topologies – star, mesh and cluster-tree
(Figure 2).

a) star topology b) mesh topology

c) cluster-tree topology

Figure 2 - ZigBee network topologies

In the star topology (Figure 2 a), a unique node operates as a ZC. The ZC chooses a
PAN identifier, which must not be used by any other ZigBee network in the vicinity.
The communication paradigm of the star topology is centralized, i.e. each device (FFD
or RFD) joining the network and willing to communicate with other devices must send
its data to the ZC, which dispatches it to the adequate destination. The star topology may
not be adequate for traditional Wireless Sensor Networks for two reasons. First, the
sensor node selected as a ZC will get its battery resources rapidly ruined. Second, the
coverage of an IEEE 802.15.4/ZigBee cluster is very limited while addressing a large-
scale WSN, leading to a scalability problem.

The mesh topology (Figure 2 b) also includes a ZC that identifies the entire network.
However, the communication paradigm in this topology is decentralized, i.e. each node
can directly communicate with any other node within its radio range. The mesh topology
enables enhanced networking flexibility, but it induces additional complexity for
providing end-to-end connectivity between all nodes in the network. Basically, the mesh
topology operates in an ad-hoc fashion and allows multiple hops to route data from any
node to any other node. In contrast with the star topology, the mesh topology may be
more power-efficient and the battery resource usage is fairer, since the communication
process does not rely on one particular node.

The cluster-tree network topology (Figure 2 c) is a special case of a mesh network
where there is a single routing path between any pair of nodes and there is a distributed

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

26

synchronization mechanism (IEEE 802.15.4 beacon-enabled mode). There is only one
ZC which identifies the entire network and one ZR per cluster. Any of the FFD can act
as a ZR providing synchronization services to other devices and ZRs.

Table 1 summarizes some of the differences between ZigBee mesh and cluster-tree
topologies.

Table 1 – ZigBee Mesh vs. Cluster-Tree

The synchronization (beacon-enabled mode) feature of the cluster-tree model may be

seen both as an advantage and as a disadvantage, as reasoned next.
On one hand, synchronization enables dynamic duty-cycle management in a per

cluster basis, allowing nodes (ZEDs and ZRs) to save their energy by entering the sleep
mode. In contrast, in the mesh topology as defined in the IEEE 802.15.4 standard
specification, only the ZEDs can have inactive periods. These energy saving periods
enable the extension of the network lifetime, which is one of the most important
requirements of WSNs. In addition, synchronization allows the dynamic reservation of
guaranteed bandwidth in a per-cluster basis, through the allocation of Guaranteed Time
Slots in the Superframe Contention Free Period (CFP). This enables the worst-case
dimensioning of cluster-tree ZigBee networks, namely it is possible to compute worst-
case message end-to-end delays and ZigBee Router buffer requirements.

On the other hand, managing the synchronization mechanism throughout the cluster-
tree networks is a very challenging task. Even if we can cope with minor
synchronization drifts between ZRs, this problem can grow for larger cluster-tree
networks (higher depths). As previously mentioned, the de-synchronization of a cluster-
tree network leads to collision problems due to overlapping Beacons and Superframes.
For instance, the CAP of one cluster can overlap the CFP of another cluster, which is not
admissible.

Regarding the routing protocols, the tree routing protocol in the cluster-tree is lighter
that the mesh routing protocol (AODV) in terms of memory and processing
requirements. The routing overhead, as compared with the AODV [22] in the mesh
topology, is reduced. Note that the tree routing protocol considers just one path from any

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

27

source to any destination, thus it does not consider redundant paths, in contrast to
AODV. Therefore, the tree routing protocol is prone to the single point of failure
problem, while that can be avoided in mesh networks if alternative routing paths are
available (more than one ZigBee Router within radio coverage).

Note that if there is a fault in a ZigBee Router, network inaccessibility times may be
inadmissible for applications with critical timing and reliability requirements. Therefore,
designing and engineering energy and time-efficient fault-tolerance mechanisms to
avoid or at least minimize the single point of failure problem in ZigBee cluster-tree
networks is of crucial importance.

Besides the Beacon/Superframe scheduling and the single-point-of-failure problems,
there are other implementation-related obstacles that makes the use of the cluster-tree
topology a challenging task, such as: (1) the dynamic network resynchronization, for
instance in case of a new cluster joining or leaving the network; (2) the dynamic
rearrangement of the all the duty cycles in the case of a router failure; (3) a new router
association or even rearranging the superframe duration of some routers to adapt the
bandwidth allocated to that branch of the tree; (4) the rearrangement of the addressing
space allocated to each router; and (5) supporting mobility of nodes, routers or even hole
clusters.

From our perspective, all these impairments have lead to the lack of commercial or
academic solutions based on the ZigBee cluster-tree model. Nevertheless, we consider
this model as a promising and adequate solution for WSN applications with timeliness
and energy-efficiency requirements, which triggered us to implement it and explore its
potential.

2.2 ZigBee Network Layer
The ZigBee Network Layer is responsible for network management (e.g.
association/disassociation, starting the network, addressing, device configuration and the
maintenance of the NIB - NWK Information Base) and formation, message routing and
security-related services.

The ZigBee Network Layer supports two service entities. The Network Layer Data
Entity (NLDE) provides a data service, allowing the transmission of data frames and
topology specific routing. Figure 3 depicts the Network Layer reference model.

Figure 3 - Network Layer reference model [7]

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

28

Joining and leaving a network must be supported by all ZigBee Devices. Both
ZigBee Coordinators and Routers must support the following additional functionalities:

− Permit devices to join the network using the following:
− Association indications from the MAC sub-layer;
− Explicit join requests from the application.

− Permit devices to leave the network using the following:
− Network Leave command frames;
− Explicit leave requests from the application.

− Participate in assignment of logical network addresses.
− Maintain a list of neighbouring devices.

The ZigBee Coordinator also defines some important additional network parameters.
It determines the maximum number of children (Cm) any device is allowed to have.
From this set of children, a maximum number (Rm) of devices can be router-capable
devices. The remaining are ZEDs. Every device has an associated depth, representing
the number of hops a transmitted frame must travel, using only a parent-child links, to
reach the ZigBee Coordinator. The ZC has a depth of 0, while its children have a depth
of 1. The ZC also determines the maximum depth (Lm) of the network. The maximum
number of children, routers and network depth are used for calculating the addresses of
the devices in the network, in a distributed address scheme.

2.2.1 Short Address Assignment
A parent device uses the Cm, Rm, and Lm values to compute a Cskip function defining the
size of the address sub-block that is distributed by each parent depending on its depth (d)
in the network. For a given network depth d, Cskip(d) is calculated as follows:

−
⋅−−+

=−−⋅+
= −−

 Otherwise ,
Rm1

RmCmRmCm1
 1Rm if),1dLm(Cm1

)d(Cskip 1dLm
(2.1)

A parent device that has a Cskip(d) value of zero is not capable of accepting children

and must be treated as an end device. A parent device that has a Cskip(d) value greater
that zero must accept devices and assigns addresses if possible. A parent device assigns
an address that is one greater than its own to the first router that associated. The next
associated router receives an address that is separated according to the return value of
the Cskip(parent depth) function. The maximum number of associated routers is defined
in the network parameter nwkMaxRouters (Rm).

Considering a parent node with a depth d and an address of Aparent, the number of
child devices n is between 1 and Cm-Rm.

()mm RCn1 −≤≤ (2.2)

The Achild address of the nth child router is calculated according to Eq. 2.3(n is the

number of child routers):

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

29

0 1 32 63 94 12
5

12
6

33 40 47 54 55 56 57 58 59 6032

ZigBee Coordinator (0x0000)

ZigBee Router (0x0020)

() ()
() () 1n,dCskip1nAA

1n,1dCskip1nAA

parentchild

parentchild

>×−+=

=+×−+=
 (2.3)

The Achild address of the nth child end device is calculated according to Eq. 2.4 (n is

the number of child end devices):

() ndCskipRmAA parentchild +×+= (2.4)

Figure 4 depicts an example of an address assignment scheme. The parameters used

in the address assignment are the following: maximum depth (Lm) = 3, maximum
children (Cm) = 6 and maximum routers (Rm) = 4.

Figure 4 - Address assignment scheme example

Figure 5 shows the ZigBee Coordinator (0x0000) available addressing scheme.
Considering the above network parameters, the ZigBee Coordinator is allowed to
associate up to A4 routers and 2 end devices in its available address pool. On the other
hand, the ZR (0x0020) is allowed to associate up to 4 ZRs and 6 ZEDs.

Figure 5 - ZigBee Coordinator addressing scheme (de cimal values)

Depth = 0
Cskip(0) = 31

Depth = 1
Cskip(1) = 7

Depth = 2
Cskip(2) = 1

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

30

2.2.2 ZigBee Routing
ZigBee Coordinators and Routers must provide the following functionalities:

− Relay data frames on behalf of higher layers;
− Relay data frames on behalf of other ZR;
− Participate in route discovery in order to establish routes for subsequent data

frames;
− Participate in route discovery on behalf of end devices;
− Participate in end-to-end route repair;
− Participate in local route repair;
− Employ the ZigBee path cost metric as specified in route discovery and route

repair.

Additionally, ZigBee Coordinators and Routers may provide the following

functionalities:
− Maintain routing tables in order to remember best available routes;
− Initiate route discovery on behalf of higher layers;
− Initiate route discovery on behalf of other ZR;
− Initiate end-to-end route repair;
− Initiate local route repair on behalf of other ZR.

2.2.3 Routing Schemes
ZigBee Coordinators and Routers support three types of routing:

− Neighbour Routing – based on a neighbour tables that contains the information of
all the devices within radio coverage. If the target device is physically in range
the message can be sent directly. Note that ZEDs cannot do this.

− Table Routing - Ad-hoc On Demand Distance Vector (AODV) [22], based on
routing and route discovery tables with the path cost metrics;

− Tree-Routing - based on the address assignment schemes; messages are
hierarchically routed upstream/downstream the tree.

Neighbour Routing
This type of routing uses the neighbour tables. If the target device is physically in range
it is possible to send messages directly to the destination. Physically in range means that
the source ZC or ZR has a neighbour table entry for the destination. This routing
mechanism is mostly used as addition to other routing mechanisms and for the ZigBee
Routers to route messages to its children devices, when they are the destination.

Table Routing - Ad-hoc On-Demand Distance Vector (AODV)
ZigBee Table Routing is based on the AODV routing algorithms. Each ZigBee
Coordinator and Router that supports this Table Routing must maintain two tables:
(1) the routing table, a long-lived and persistent table with the information of routes, and
(2) a route discovery table with the information of the route discovery procedures where
each entry only lasts the duration of the discovery.

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

31

The Ad-hoc On Demand Distance Vector (AODV) [22] routing protocol was
designed for ad hoc mobile networks. AODV is capable of both unicast and multicast
routing. AODV allows mobile nodes to obtain routes quickly for new destinations, and
does not require nodes to maintain routes to destinations that are not in active
communication. AODV allows mobile nodes to respond to link breakages and changes
in network topology in a timely manner. The operation of AODV is loop-free, and by
avoiding the Bellman-Ford "counting to infinity" problem offers quick convergence
when the ad-hoc network topology changes (typically, when a node moves in the
network). When the link breaks, AODV causes the affected set of nodes to be notified
so that they are able to invalidate the routes using the lost link. It is an on demand
algorithm, meaning that it builds routes between nodes only if requested by source
nodes. It maintains these routes as long as they are needed by the sources. Additionally,
AODV can form trees, connecting multicast groups, composed of the group members
and the nodes needed to connect. AODV uses sequence numbers to ensure the freshness
of routes. It is loop-free, self-starting, and scales to larger numbers of nodes.

In ZigBee Networks, the routing management is done by the means of NWK

command frames. The available commands are the following:
− Route request – Command send to search for a route to a specified device, can

also be used to repair a route
− Route reply – Command send in response of a route request, also used to request

state information
− Route Error – notification of a source device of the data frame about the failure in

forwarding the frame:
− Leave – notification of a device leaving the network
− Route Record – notification of a list of nodes used in relaying a data frame
− Rejoin request – notification of a device rejoining the network
− Rejoin response – rejoin response of a rejoin request

The route choice for a communication flow is based on the total link cost represented

by C, meaning that the path with the lowest cost is chosen. The total link cost is the sum
of individual point-to-point link cost.

The calculation of C is as follows: for a defined path P where L defines the length of
a set of devices [D 1,D2, … DL] and a link [D i, Di+1] the path cost C is defined as:

{ } []{ }∑
−

=
+=

1

1
11,

L

i
iDDCPC (2.5)

Each C{[D 1,Di+1]} is the individual point-to-point link cost, calculated by the

following formulation:

{ }

=
4

1
,7min

,7

lp
roundlC

(2.6)

where pl is defined as the probability of packet delivery through link l.

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

32

The link probability estimation factors are implementation specific, but generally it
they are based on the counting of the received beacons and data frames in order to detect
packet loss and in the estimation of the Link Quality Indicator (LQI).

Tree-Routing
This routing mechanism is based on the short addressing scheme and was initially
proposed by MOTOROLA [23]. Each device, upon the reception of a data frame, reads
the routing information fields and checks the destination address. If the destination is a
child of the device (neighbour table check), the device relays the packet to the
appropriate address. If the destination address is not a child, the device must check if the
address is a descendent using the condition in 2.7, where A is device network address, D
the destination address and d the device depth in the network.

()1dCskipADA −+<< (2.7)

The next hop (N) address when routing down is given by:

)(
)(

)1(
1 dCskip

dCskip

AD
AN ×

 +−++= (2.8)

If the destination address is not a descendant, the device relays the packet to its

parent.
Consider the network scenario illustrated in Figure 4 and the following network

parameters: Lm = 3; Cm = 6; Rm = 4. The Cskip values are presented in Table 2.

Table 2 - Cskip example values

Depth Cskip(Depth)
0 31
1 7
2 1

If ZR 0x0002 transmits a message to ZR 0x0028, the tree-routing protocol behaves
as follows:

1. ZR 0x0002 builds the data frame and sends it to its parent (0x0001). The most
relevant fields of this data frame are outlined next:

− MAC destination address – 0x0001;

− MAC source address – 0x0002;

− Network Layer Routing Destination Address – 0x0028;

− Network Layer Routing Source Address – 0x0002;

2. ZR 0x0001 receives the data frame, realizes that the message in not for him and has
to be relayed. The device checks its neighbour table for the routing destination
address, trying to find if the destination is one of its child devices. Then, the device

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

33

checks if the routing destination address is a descendant by verifying condition in
2.7 that results in:

0x0001 < 0x0028 < 0x0001 + 7

Note that ZR 0x0001 is a depth 1 device in the network. After verifying that the

destination is not a descendant, ZR 0x0001 routes the data frame to its parent, ZC
0x0000. The most relevant fields of this data frame are outlined next:

− MAC destination address – 0x0000;

− MAC source address – 0x0001;

− Network Layer Routing Destination Address – 0x0028;

− Network Layer Routing Source Address – 0x0002;

3. ZC 0x0000 receives the data frame and verifies if the routing destination address
exists in its neighbour table. After realizing that the destination device is not its
neighbour, since the ZC is the root of the tree and cannot route up, the next hop
address is calculated as follows:

31
31

)100000(00280
100000 ×

 +−++= xx
xN

The next hop address results in N = 32 (decimal) = 0x0020. The most relevant fields

of this data frame are outlined next:

− MAC destination address – 0x0020;

− MAC source address – 0x0000;

− Network Layer Routing Destination Address – 0x0028;

− Network Layer Routing Source Address – 0x0002;

4. ZR 0x0020 receives the data frame and checks its neighbour table for the routing
destination address. After verifying that the address is its neighbour, the message is
routed to it. The next hop is assigned with the short address present in the respective
neighbour table entry. The most relevant fields of this data frame are outlined next:

− MAC destination address – 0x0028;

− MAC source address – 0x0020;

− Network Layer Routing Destination Address – 0x0028;

− Network Layer Routing Source Address – 0x0002;

2.3 IEEE 802.15.4 Protocol Standard
The IEEE 802.15.4 Full Function Devices (FFD) have three different operation modes:

− The Personal Area Network (PAN) Coordinator: the principal controller of the
PAN. This device identifies its own network as well as its configurations, to

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

34

which other devices may be associated. In ZigBee, this device is referred to as the
ZigBee Coordinator (ZC).

− The Coordinator: provides synchronization services through the transmission of
beacons. This device should be associated to a PAN Coordinator and does not
create its own network. In ZigBee, this device is referred to as the ZigBee Router
(ZR).

− The End Device: a device which does not implement the previous functionalities
and should associate with a ZC or ZR before interacting with the network. In
ZigBee, this device is referred to as the ZigBee End Device (ZED).

The Reduced Function Device (RFD) is an end device operating with the minimal

implementation of the IEEE 802.15.4. An RFD is intended for applications that are
extremely simple, such as a light switch or a passive infrared sensor; they do not have
the need to send large amounts of data and may only associate with a single FFD at a
time.

Throughout this Thesis the IEEE 802.14.5 operational modes and the ZigBee device
names are used interchangeably (e.g. PAN Coordinator = ZigBee Coordinator,
Coordinator = ZigBee Router and End Device = ZigBee End Device). The designation
of Coordinator represents both ZC and ZRs.

2.3.1 Physical Layer
The IEEE 802.15.4 physical layer is responsible for data transmission and reception
using a certain radio channel and according to a specific modulation and spreading
technique.

The IEEE 802.15.4 offers three operational frequency bands: 2.4 GHz, 915 MHz and
868 MHz (Figure 6). There is a single channel between 868 and 868.6 MHz (20 kbit/s),
10 channels between 902 and 928 MHz (40 kbit/s), and 16 channels between 2.4 and
2.4835 GHz (250 kbit/s). The protocol also allows dynamic channel selection, a channel
scan function in search of a beacon, receiver energy detection, link quality indication
and channel switching.

Figure 6 - Operating frequencies and bands [24]

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

35

All of these frequency bands are based on the Direct Sequence Spread Spectrum
(DSSS) spreading technique.

The physical layer of IEEE 802.15.4 is in charge of the following tasks:

− Activation and deactivation of the radio transceiver: The radio transceiver may
operate in one of three states: transmitting, receiving or sleeping. Upon request
of the MAC sub-layer, the radio is turned ON or OFF. The turnaround time
from transmitting to receiving and vice versa should be no more than 12
symbol periods, according to the standard (each symbol corresponds to 4 bits).

− Energy Detection (ED): Estimation of the received signal power within the
bandwidth of an IEEE 802.15.4 channel. This task does not make any signal
identification or decoding on the channel. The energy detection time should be
equal to 8 symbol periods. This measurement is typically used by the Network
Layer as a part of channel selection algorithm or for the purpose of Clear
Channel Assessment (CCA), to determine if the channel is busy or idle.

− Link Quality Indication (LQI): Measurement of the Strength/Quality of a
received packet. It measures the quality of a received signal. This measurement
may be implemented using receiver ED, a signal to noise estimation or a
combination of both techniques.

− Clear Channel Assessment (CCA): Evaluation of the medium activity state:
busy or idle. The CCA is performed in three operational modes: (1) Energy
Detection mode: the CCA reports a busy medium if the detected energy is
above the ED threshold. (2) Carrier Sense mode: the CCA reports a busy
medium only is it detects a signal with the modulation and the spreading
characteristics of IEEE 802.15.4 and which may be higher or lower than the ED
threshold. (3) Carrier Sense with Energy Detection mode: this is a combination
of the aforementioned techniques. The CCA reports that the medium is busy
only if it detects a signal with the modulation and the spreading characteristics
of IEEE 802.15.4 and with energy above the ED threshold.

− Channel Frequency Selection: The IEEE 802.15.4 defines 27 different wireless
channels. Each network can support only part of the channel set. Hence, the
physical layer should be able to tune its transceiver into a specific channel
when requested by a higher layer.

2.3.2 Medium Access Control (MAC) Sub-layer
The MAC protocol supports two operational modes (Figure 7):
− The non beacon-enabled mode. When the ZC selects the non-beacon enabled

mode, there are neither beacons nor superframes. Medium access is ruled by an
unslotted CSMA/CA mechanism (refer to Section 2.2.6).

− The beacon-enabled mode. In this mode, beacons are periodically sent by the ZC
or ZR to synchronize nodes that are associated with it, and to identify the PAN. A
beacon frame delimits the beginning of a superframe (refer to Section 2.2.3)
defining a time interval during which frames are exchanged between different nodes
in the PAN. Medium access is basically ruled by Slotted CSMA/CA. However, the
beacon-enabled mode also enables the allocation of contention free time slots,
called Guaranteed Time Slots (GTSs) for nodes requiring guaranteed bandwidth.

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

36

Figure 7 - IEEE 802.15.4 Operational Modes

Superframe Structure
The superframe is defined between two beacon frames and has an active period and an
inactive period. Figure 8 depicts the IEEE 802.15.4 superframe structure.

Figure 8 - IEEE 802.15.4 Superframe Structure [24]

The active portion of the superframe structure is composed of three parts, the

Beacon, the Contention Access Period (CAP) and the Contention Free Period (CFP):
− Beacon: the beacon frame is transmitted at the start of slot 0. It contains the

information on the addressing fields, the superframe specification, the GTS
fields, the pending address fields and other PAN related.

− Contention Access Period (CAP): the CAP starts immediately after the beacon
frame and ends before the beginning of the CFP, if it exists. Otherwise, the
CAP ends at the end of the active part of the superframe. The minimum length
of the CAP is fixed at aMinCAPLength = 440 symbols. This minimum length
ensures that MAC commands can still be transmitted when GTSs are being
used. A temporary violation of this minimum may be allowed if additional
space is needed to temporarily accommodate an increase in the beacon frame
length, needed to perform GTS management. All transmissions during the CAP
are made using the Slotted CSMA/CA mechanism. However, the
acknowledgement frames and any data that immediately follows the
acknowledgement of a data request command are transmitted without

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

37

contention. If a transmission cannot be completed before the end of the CAP, it
must be deferred until the next superframe.

− Contention Free Period (CFP): The CFP starts immediately after the end of the
CAP and must complete before the start of the next beacon frame (if BO equals
SO) or the end of the superframe. Transmissions are contention-free since they
use reserved time slots (GTS) that must be previously allocated by the ZC or
ZR of each cluster. All the GTSs that may be allocated by the Coordinator are
located in the CFP and must occupy contiguous slots. The CFP may therefore
grow or shrink depending on the total length of all GTSs.

In beacon-enabled mode, each Coordinator defines a superframe structure Figure 8
which is constructed based on:

− The Beacon Interval (BI), which defines the time between two consecutive
beacon frames;

− The Superframe Duration (SD), which defines the active portion in the BI, and
is divided into 16 equally-sized time slots, during which frame transmissions
are allowed.

Optionally, an inactive period is defined if BI > SD. During the inactive period (if it
exists), all nodes may enter in a sleep mode (to save energy). BI and SD are determined
by two parameters, the Beacon Order (BO) and the Superframe Order (SO), respectively,
as follows:

14BOSO0for
2ionframeDurataBaseSuperSD

2ionframeDurataBaseSuperBI
SO

BO

≤≤≤

×=

×= (2.9)

aBaseSuperframeDuration = 15.36 ms (assuming 250 kbps in the 2.4 GHz frequency
band) denotes the minimum duration of the superframe, corresponding to SO=0.

As depicted in Figure 8, low duty cycles can be configured by setting small values of
the SO as compared to BO, resulting in greater sleep (inactive) periods. In ZigBee
Cluster-Tree networks, each cluster can have different and dynamically adaptable duty-
cycles. This feature is particularly interesting for WSN applications, where energy
consumption and network lifetime are main concerns. Additionally, the Guaranteed
Time Slot (GTS) mechanism is quite attractive for time-sensitive WSNs, since it is
possible to guarantee end-to-end message delay bounds both in Star and Cluster-Tree
topologies.

Association and Channel Scan Mechanisms
The association procedure takes place when a device wants to associate with a
Coordinator. This mechanism can be divided into three separate phases: (1) channel scan
procedure; (2) selection of a possible parent; (3) association with the parent.

IEEE 802.15.4 enables four types of channel scan procedures: (1) the energy
detection scan, where the device obtains a measure of the peak energy in each channel;
(2) the active scan, where the device locates all Coordinators transmitting beacon
frames; this scan is performed on each channel by first transmitting a beacon request
command; (3) the passive scan, where similarly to the active scan, the device locates all
Coordinator transmitting beacon frames with the difference that the scan is performed
only in a receive mode, without transmitting beacon requests; and (4) the orphan scan,
used to locate the Coordinator with which the scanning device had previously
associated.

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

38

After the channel scan procedure is completed, the NWK layer receives a list of all
detected PAN descriptors (containing information about the potential parents). Based on
the information collected during the scan, the device can choose the most suitable parent
(that permits associations). The IEEE 802.15.4 protocol standard leaves the way to take
the association decision to the system designer. Nevertheless one of the most relevant
parameters to be considered is the Link Quality Indicator (LQI).

For a device to associate to a Coordinator, it must send an association command
frame. Then, if the Coordinator accepts the device, it adds it to its neighbour table as its
child. An association response command frame is, in the case of a successful
association, sent to the device (via an indirect transmission, refer to Section 2.2.8),
embedding its short address. Otherwise, in the case of an unsuccessful association, the
association response embeds the problem status information. The Coordinator replies to
the association command frame with an acknowledgment embedding the pending data
control flag active, meaning that it has data ready to be transmitted to the device. The
association procedure is completed when the device sends a data request command
frame to the Coordinator requesting the pending data (the association response
command). After a successful association, the device stores all the information about the
new PAN by updating its MAC PAN Information Base (MAC PIB) and can start
transmissions. Figure 9 exemplifies the sequence of messages for a successful
association request, followed by a data transmission.

The disassociation from a Coordinator is done via a disassociation request command.
The disassociation can be initiated either by the device or by the Coordinator. After the
disassociation procedure, the device loses its short address and is not able to
communicate.

Figure 9 - Association mechanism example

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

39

The Coordinator updates the list of associated devices, but it can still keep the device
information for a future re-association. Figure 10 shows a transmission sequence of a
disassociation request initiated by a device.

Figure 10 - Dissassociation mechanism example

Guaranteed Time Slot (GTS) mechanism
The GTS mechanism allows devices to access the medium without contention, in the
CFP. GTSs are allocated by the Coordinator and are used only for communications
between the Coordinator and a device. Each GTS may contain one or more time slots.
The Coordinator may allocate up to seven GTSs in the same superframe, provided that
there is sufficient capacity in the superframe. Each GTS has only one direction: from the
device to the Coordinator (transmit) or from the Coordinator to the device (receive).
Figure 11 illustrates message sequence diagram for a GTS allocation.

Figure 11 - GTS allocation message sequence diagram [24]

The GTS can be deallocated at any time at the discretion of the Coordinator or the
device that originally requested the GTS allocation. A device to which a GTS has been
allocated can also transmit during the CAP. The Coordinator is the responsible for
performing the GTS management; for each GTS, it stores the starting slot, length,
direction, and associated device address. All these parameters are embedded in the GTS
request command. Only one transmit and/or one receive GTS are allowed for each
device. Upon the reception of the deallocation request the Coordinator updates the GTS
descriptor list by removing the previous allocated slot and rearranging the remaining
allocation starting slots. The arrangement of the CFP consists in shifting right the

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

40

allocated GTS descriptors with starting slot before the recent deallocated GTS descriptor
and consequently the final CAP slot variable is updated. Figure 12 illustrates an example
of this procedure.

Figure 12 - CFP defragmentation upon a GTS dealloca tions [24]

In the Figure 12, the 1st timeline represents the three allocated GTS. The 2nd timeline
shows the deallocation of GTS 2 that starts on the 10th time slot and has duration of 4
time slots. The final timeline show GTS 3 shifted right by 4 time slots. The first CTF
time slot shifted right from slot 8 (in timeline 1) to slot 12 (in timeline 3).

 The Coordinators monitor GTS activity and if there are no transmissions during a
defined number of time slots the GTS allocation expires. The expiration occurs if no
data or no acknowledgement frames are received by the device or by the Coordinator, on
every 2*n superframes, where n is defined as:

()

≤≤=
≤≤= −

14rdermacBeaconO9if,1n

8rdermacBeaconO0if,2n rdermacBeaconO8
 (2.10)

CSMA/CA Mechanism
In IEEE 802.15.4, contention-based MAC (Medium Access Control) can be either
slotted or unslotted CSMA/CA, depending on the network operation behaviour: beacon-
enabled or non beacon-enabled modes, respectively.

The CSMA/CA mechanism is based on backoff periods (with the duration of 20
symbols). Three variables are used to schedule medium access:

− Number of Backoffs (NB), representing the number of failed attempts to
access the medium;

− Contention Window (CW), representing the number of backoff periods that
must be clear before starting transmission;

− Backoff Exponent (BE), enabling the computation of the number of wait
backoffs before attempting to access the medium again.

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

41

Figure 13 depicts a flowchart describing the slotted version of the CSMA/CA
mechanism. It can be summarized in five steps:

1. initialization of the algorithm variables: NB equal to 0; CW equals to 2 and BE
is set to the minimum value between 2 and a MAC sub-layer constant
(macMinBE);

2. after locating a backoff boundary, the algorithm waits for a random defined
number of backoff periods before attempting to access the medium;

3. Clear Channel Assessment (CCA) to verify if the medium is idle or not.
4. The CCA returned a busy channel, thus NB is incremented by 1 and the

algorithm must start again in Step 2;
5. The CCA returned an idle channel, CW is decremented by 1 and when it

reaches 0 the message is transmitted, otherwise the algorithm jumps to Step 3.
In the slotted CSMA/CA, when the battery life extension is set to 0, the CSMA/CA

must ensure that, after the random backoff (step 2), the remaining operations can be
undertaken and the frame can be transmitted before the end of the CAP. If the number of
backoff periods is greater than the remaining in the CAP, the MAC sub-layer pause the
backoff countdown at the end of the CAP and defers it to the start of the next
superframe. If the number of backoff periods is less or equal than the remaining number
of backoff periods in the CAP, the MAC sub-layer applies the backoff delay and re-
evaluate whether it can proceed with the frame transmission. If the MAC sub-layer do
not have enough time, it defers until the start of the next superframe, continuing with the
two CCA evaluations (step 3). If the battery life extension set to 1, the backoff
countdown must only occur during the first six full backoff periods, after the reception
of the beacon, as the frame transmission must start in one of these backoff periods.

Figure 13 - The Slotted CSMA/CA Mechanism [24]

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

42

The non slotted mode of the CSMA/CA (Figure 14) is very similar to the slotted
version except the algorithm does not need to rerun (CW number of times) when the
channel is idle.

Figure 14 - The Un-slotted CSMA/CA mechanism [24]

Inter-Frame Spacing (IFS)
The inter-frame spacing (IFS) is an idle communication period that is needed for
supporting the MAC sub-layer needs to process data received by the physical layer. To
allow this, all transmitted frames are followed by an IFS period. If the transmission
requires an acknowledgment, the IFS will follow the acknowledgement frame. The
length of the IFS period depends on the size of the transmitted frame: a long inter-frame
spacing (LIFS) or short inter-frame spacing (SIFS). The selection of the IFS is based on
the IEEE 802.15.4 aMaxSIFSFrameSize parameter, defining the maximum allowed
frame size to use the SIFS. The CSMA/CA algorithm takes the IFS value into account
for transmissions in the CAP. These concepts are illustrated in Figure 15.

Figure 15 - Inter-frame spacing [24]

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

43

Transmission scenarios and reception conditions
The IEEE 802.15.4 protocol standard enables three different types of transmissions:

1. Direct transmissions – the frames are transmitted to the medium without any
channel assessment i.e. the beacon frames, the acknowledgment frames and the
frames in the GTS time slots;

2. Indirect transmissions – the frames are stored in the Coordinator to which the
destination device is associated. Then, the information about the stored frames
(or pending transmissions) is included in the pending addresses descriptors
fields of the beacon frame. If a device has pending data in the Coordinator it
can request it by sending a data request command frame. An example of this
mechanism is depicted in Figure 16 where the Coordinator beacon contains the
short address 0x0004 in the pending address list. In the Coordinator neighbour
table, the short address 0x0004 is associated to the extended address
0x0000000400000004. Then, the device 0x0004 requests the data with a data
request message embedding its extended address. The Coordinator searches in
its neighbour tables for the short address corresponding to the extended address
received in the command frame and transmit the corresponding pending data.
In the next Coordinator beacon the pending address list is updated.

3. Normal transmissions – the frames are transmitted to the medium with
contention, by applying the CSMA/CA algorithm i.e. data frames and
command frames transmitted during the CAP. Depending of the operation
mode (beacon-enabled or non beacon-enabled) the CSMA/CA algorithm has
two versions, the slotted or the unslotted respectively.

Figure 16 - Indirect transmission example

The IEEE 802.15.4 protocol standard identifies three different transmissions
scenarios during the CAP:

− Successful data transmission– the sender successfully transmits the frame to
the intended recipient. The recipient receives the frame and sends an
acknowledgment if required. If it is an acknowledged request, the sender starts
a timer that expires after macAckWaitDuration symbols. Upon the reception of
the acknowledge frame (before the timer expires), the sender disables and reset
the timer. The data transfer is completed successfully.

Chapter 2 – Overview of IEEE 802.15.4 and ZigBee

44

− Loss of frame – the sender successfully transmits the frame to the medium but
it never reaches the destination, so that an acknowledgement frame is not
transmitted. The sender timer expires (after macAckWaitDuration) and the
sender retransmits the frame again. This procedure is repeated up to a
maximum of aMaxFrameRetries times after which the transmission aborts.

− Loss of acknowledgment - the sender successfully transmits the frame to the
intended recipient that upon reception replies with an acknowledgement frame.
The sender never receives the acknowledgment and retries the transmission.

The MAC sub-layer will only accept frames from the Phy layer if it satisfies the

following requirements:
− The frame type subfield of the frame control field does not contain an illegal

frame type;
− If the frame type indicates that the frame is a beacon frame, the source PAN

identifier must match macPANId, unless macPANId is equal to 0xffff, in which
case the beacon frame must be accepted regardless of the source PAN
identifier;

− If a destination PAN identifier is included in the frame, it must match
macPANId or the broadcast PAN identifier (0xffff);

− If a short destination address is included in the frame, it must match either
macShortAddress or the broadcast address (0xffff). Otherwise, if an extended
destination address is included in the frame, it must match aExtendedAddress;

− If only source addressing fields are included in a data or MAC command
frame, the frame is accepted only if the device is a Coordinator and the source
PAN identifier matches macPANId.

Chapter 3
Technological Platforms and Tools

This chapter describes the technologies used to carry out all of the
implementation and experimental work presented in this Thesis, like the
WSN platforms and network analysers used for debugging and analysis.
It also presents some of the Open-ZB tools like the TinyOS IEEE
802.15.4/ZigBee protocol stack implementation and the OPNET
simulation model.

3.1 Mote Platforms – The MICAz and TelosB
The Open-ZB [19] IEEE 802.15.4/ZigBee implementation is supported by two hardware
platforms, the MICAz [25] and the TelosB [26] motes. The MICAz mote (Figure 17
left) has the following features:

− ATMEL ATmega128L 8-bit microcontroller [27];
− CC2420 RF transceiver [28];
− 128 KB of Program memory (in-system reprogrammable flash);
− 4 KB of EEPROM;
− Supports several sensor boards;
− UART communication port.

Chapter 3 – Technological Platforms and Tools

Figure

The TelosB mote (Figure
− TI MSP430 16-
− CC2420 RF transceiver
− 48 KB of Program memory (in
− 10 KB of EEPROM;
− Includes a temperature and light sensor;
− UART communication port (USB converter).

Figure

The TelosB architecture is slightly different from the one of the MICAz, especially
due to the 16-bits MSP430 microcontroller
Atmega128 microcontroller
driver modules already provided in TinyOS and the adaptation of the first
implementation version, which only supported the MICAz platform, to s

Technological Platforms and Tools

46

Figure 17 - Micaz mote and the block diagram [25]

Figure 18 left) has the following characteristics:
-bit microcontroller [29] ;

CC2420 RF transceiver [28];
48 KB of Program memory (in-system reprogrammable flash);
10 KB of EEPROM;
Includes a temperature and light sensor;
UART communication port (USB converter).

Figure 18 - TelosB mote and the block diagram [26]

The TelosB architecture is slightly different from the one of the MICAz, especially
bits MSP430 microcontroller [29] as compared to the MICAz 8

Atmega128 microcontroller [27]. This triggers the need for selecting the corresponding
driver modules already provided in TinyOS and the adaptation of the first
implementation version, which only supported the MICAz platform, to support the 16

The TelosB architecture is slightly different from the one of the MICAz, especially
as compared to the MICAz 8-bits

. This triggers the need for selecting the corresponding
driver modules already provided in TinyOS and the adaptation of the first

upport the 16-

Chapter 3 – Technological Platforms and Tools

47

bits memory block of the MSP430. Both platforms use the same 2.4 GHz Chipcon
CC2420 radio transceiver [28].

3.2 The FLEX Board
The FLEX [30] was built as an embedded board to exploit the potential of the Microchip
micro-controllers: the dsPIC family, aiming at the development and test of real-time
applications.

Its main features are:
− DsPIC33FJ256MC710 Microcontroller at 40 MHz [31];
− Flexipanel EASYBEE IEEE 802.15.4 Transceiver module [32];
− 256 KB of Program memory (in-system reprogrammable flash);
− modular architecture (done by using daughter boards piggybacking);
− ICD2 in-circuit programmer connector;
− the full support of the ERIKA real-time kernel from Evidence Srl;

The compact design allows the employment of FLEX not only for development

purposes, but also as a suitable solution for the direct deployment of Wireless,
Acquisition, and Digital control systems. The basic configuration of a FLEX device is
made by the Base Board. The FLEX Base Board mounts a Microchip dsPIC micro-
controller, and exports almost all the pins of the micro-controller. The user can easily
connect the desired components to the dsPIC ports in order to build the specific
application.

As depicted in Figure 19, several daughter boards can be connected in piggyback to
the Flex Base Board. The daughter boards have different features and they can be easily
combined to obtain complex devices.

Figure 19 - The FLEX board [30]

3.3 Programming Interfaces
The TelosB motes do not need any programmer interface because they already have an
USB port that can be used to upload programs as well as interfacing the mote with other
equipments. However, the MICAz mote needs to be programmed using an interface
board such as the MIB510 (Figure 20 A) [33], the MIB520 (Figure 20 B) [34], and the
MIB600 (Figure 20 C) [35]. The interface boards MIB510 and MIB520 are very similar

Chapter 3 – Technological Platforms and Tools

48

except the fact the MIB510 has a serial RS-232 interface and the MIB520 has an USB
interface. The MIB600 has an RJ-45 Ethernet interface with an implementation of the
full TCP/IP protocol. These three interface boards allow the use of a JTAG adapter for
debugging and can be used as base stations interfacing the wireless sensor network with
a PC.

A) MIB510 [33] B) MIB520 [34] C) MIB600 [35]

Figure 20 - Interface Boards - MIB510, MIB520 and M IB600

The FLEX boards are programmed through a debugger/programmer device called
MPLAB ICD2 [36] from Microchip. The MPLAB ICD 2 is a low cost, real-time
debugger and programmer for selected PIC MCUs and dsPIC® DSCs. Using Microchip
Technology's proprietary In-Circuit Debug functions, programs can be downloaded,
executed in real time and examined in detail with the debug functions of MPLAB IDE.
Set watch variables and breakpoints from symbolic labels in C or assembly source code,
and single step through C source lines or into assembly code. MPLAB ICD 2 can also be
used as a development programmer for supported MCUs since it is able to program or
reprogram the Flash-based microcontroller while installed on the board.

Some of the features are:
− USB (Full Speed 2 M bits/s) & RS-232 interface to host PC
− Real time background debugging
− MPLAB IDE GUI (free copy included)
− Built in over-voltage/short circuit monitor
− Firmware upgradeable from PC
− Supports low voltage to 2.0 volts. (2.0 to 6.0 range)
− Diagnostic LEDs (Power, Busy, Error)
− Reading/Writing memory space and EEDATA areas of target microcontroller
− Programs configuration bits
− Erase of program memory space with verification
− Peripheral freeze-on-halt stops timers at breakpoints

3.4 IEEE 802.15.4/ZigBee Protocol Analysers
The implementation of the IEEE 802.15.4/ZigBee has been supported by two network
protocol analysers (packet sniffers): the Chipcon CC2420 Packet Sniffer for IEEE
802.15.4 v1.0 [37] and the Daintree IEEE 802.15.4/ZigBee Network Analyser [38].
These analysers interpret the IEEE 802.15.4 and ZigBee frames, allowing to debug and
to validate the implementation of the IEEE 802.15.4/ZigBee protocols.

Chapter 3 – Technological Platforms and Tools

49

a) Snapshot of the sniffer application
[37]

b) CC2420 EB with a CC2420EM [38]

Figure 21 - Overview of the Chipcon IEEE802.15.4/Zi gBee Packet Sniffer

The packet sniffer provided by Chipcon (Figure 21), the CC2420 Packet Sniffer for
IEEE 802.15.4 v1.0 provides a raw list of the packets transmitted. This application
works in conjunction with a CC2400EB board (Figure 21.b) and a CC2420EM module
(equipped with a CC2420 radio transceiver). Figure 21.a depicts a snapshot of the sniffer
application which provides the following features:

− Raw list of the received packets with timestamp information;
− Interpretation of the packets information, highlighting the different packet

fields;
− Packet fields filtering;
− Device list.

Chipcon also provides a tool used to test the transceivers, the SmartRF Studio [39].

This application interacts with the CC2420EB/CC2420EM evaluation board and allows
viewing and interacting with the CC2420 transceiver memory registries. With this tool is
possible to test different configurations on the transceiver and test its behaviour with
simple send/receive functions. This tool was very useful during the protocol stack
implementation enabling a better understanding of the physical layer implementation and
the functionalities of the transceiver. Figure 22 depicts an overview example of the
Smart RF application interfaces, which provides the following features:

Read/Write from/to the CC2420 transceiver memory registries (Figure 22.a);
− Execute functions of the transceiver (e.g. TR ON, TX OFF, etc.)
− Test transmissions, IEEE 802.15.4 compatible packets or an unmodulated

carrier;
− Memory views (Figure 22.b) of the buffers (receive and transmit).

Chapter 3 – Technological Platforms and Tools

50

a) Registry view b) Memory view

Figure 22 - Overview Chipcon SmartRF Studio [39]

The Daintree Network Analyser provides more functionalities than the Chipcon
sniffer. Besides the received packets list and their field highlighting, it also constructs a
graphic view of the network topology, including the visualization of routing paths,
message flows, device states and link quality of the messages, as depicted in Figure 23.

Figure 23 - Overview of Daintree Network Analyser [38]

Chapter 3 – Technological Platforms and Tools

51

Another interesting feature, is the network status of the devices by analysing the
messages transmitted, messages received, loss message ration, bandwidth usage, average
link quality indicator among others. This application also distinguishes the analysis
parameters depending on the selected protocol layers. The Daintree Analyser enables the
import of a plant layout (office floor, factory floor) and overlay the network topological
view over it. This feature allows dragging and dropping nodes, assigning labels to each
node and it can be very useful for monitoring the network.

The hardware used in conjunction with this network analyser is the 2400 Sensor
Network Adapter [40]. This adapter includes an Ethernet interface and can be used for a
multiple and synchronized node sniffing, meaning that several 2400 can be scattered
(connected to an Ethernet network) in a certain geographical area in a way that IEEE
802.15.4/ZigBee traffic can be collected at different locations of a large-scale network
into a single application.

3.5 TinyOS and ERIKA Operating Systems

3.5.1 About operating systems for resource constrained network embedded nodes
The Operating System provides an abstraction of the machine hardware and is in charge
of reacting to events and handling access to memory, CPU, and hardware peripherals.
Especially in constrained hardware devices like those of sensor boards, the effectiveness
in the OS paradigms largely affects the response in the target application. The execution
model is the key factor differentiating the many solutions in existing OSs for WSNs.
TinyOS [43] uses a stack shared among the processes and no heap. Each instance of the
task runs until the end of the code unless it is pre-empted by an ISR (Event Handler)
activated by an event occurrence; ISRs can in turn spawn a new task or call a function
(command). The task scheduler implements a First Come First Served (FCFS) strategy.
Lacking priorities and pre-emption, it is impossible to give precedence to more
important activities.

Other Operating Systems (e.g. ERIKA [44], nanoRK [45]) allow task pre-emption
and real-time priority-driven scheduling.

Tasks can block on certain events, can be woken up (activated) upon the occurrence
of internal or external events (the reception of a network message or other hardware
interrupts, or explicit activation by other tasks), or upon expiration of software timers.
To permit pre-emption, some machine-dependent mechanisms must be implemented to
save the “context” of the task (registers and stack pointer) at suspension occurrence.
Such mechanism permits to resume the suspended computation when the task is
rescheduled.

An intermediate software solution is given by Contiki [45]. This OS uses a
monostack memory model for an event-driven kernel. The application programs are
dynamically loaded at run-time. It supports a thread-like coding style (protothreads) but
enforcing a sequential flow of control; optionally multi-threading can be adopted, linking
to a specific library. Table 3 presents some of the well-known operating systems for
resourced constrained devices.

Chapter 3 – Technological Platforms and Tools

52

Table 3 - Operating Systems for resource constraine d devices

3.5.2 TinyOS and nesC
TinyOS [43] is an operating system for embedded systems with an event-driven
execution model. TinyOS is developed in nesC [47], a language for programming
structured component-based applications. nesC has a C-like syntax and is designed to
express the structuring concepts of TinyOS. This includes the concurrency model,
mechanisms for structuring, naming and linking together software components into
embedded system applications. The component-based application structure provides
flexibility to the application design and development. nesC applications are built out of
components and interfaces.
The components define two target areas:

− the specification, a code block that declares the functions it provides
(implements) and the functions that it uses (calls);

− the implementation of the functions provided.
The interfaces are bidirectional collections of functions provided or used by a

component. The interfaces commands are implemented by the providing component and
the interface events are implemented by the component using it. The components are
“wired” together by means of interfaces, forming an application.

TinyOS defines a concurrency model based on tasks and hardware events
handlers/interrupts. TinyOS tasks are synchronous functions that run without preemption
until completion and their execution is postponed until they can execute. Hardware
events are asynchronous events that are executed in response to a hardware interrupt and
also run to completion.

Operating
System

Origin Open
source

Real
-

time

Link

TinyOS UCB, Intel
(USA)

Yes No http://www.tinyos.net

Contiki SICS
(Sweden)

Yes No http://www.sics.se/contiki

Nano-RK CMU (USA) Yes Yes http://www.nanork.org

ERIKA SSSUP (Italy) Yes Yes http://erika.sssup.it

MANTIS UC Boulder
(USA)

Yes No http://mantis.cs.colorado.edu

SOS UCLA (USA) Yes No https://projects.nesl.ucla.edu/
public/sos-2x/doc

Chapter 3 – Technological Platforms and Tools

53

TinyOS directory structure is the following:
− tinyos-1.x

− apps – Standard TinyOS application and test programs;
− contrib – Users contribution (generally the tinyos-1.x directory

structure is replicated in each contribution);
− doc – Documentation and On-line Tutorial;
− tools – Development utilities and programs;
− tos – TinyOS modules and interfaces.

− tos
− interfaces – Interfaces for TinyOS component;
− lib – Libraries;
− platform – Drivers for mote hardware;
− sensorboards – Drivers for sensor boards;
− system – Drivers for the mote system – EEPROM,UART;
− types – Special type definition.

Figure 24 depicts the possible interactions between the components and interfaces.

Figure 24 - Arrangement of the components and their wiring [47]

The graphical arrangements have the following meaning:

− A requires interface I , B provides I , and A and B are wired together.
− C and D both require or both provide J. The direction of the arrow

indicates that the original wiring is "C = D".
− E requires function f, and F provides function f.

TinyOS also provides a program called nesdoc that provides a graphical arrangement

of all the components used by an application. This tool is very useful to understand how
TinyOS binds all the components.

3.5.3 ERIKA and RT-Druid
Erika Enterprise RTOS is a multi-processor real-time operating system kernel,
implementing a collection of Application Programming Interfaces (APIs) similar to
those of OSEK/VDX standard for automotive embedded controllers. ERIKA is available
for several hardware platforms and it introduces innovative concepts, mechanisms and
programming features to support micro-controllers and multi-core systems-on-a-chip.

ERIKA features a real-time scheduler and resource managers, allowing the full
exploitation of the power of new generation micro-controllers and multi-core platforms.
Tasks in ERIKA are scheduled according to fixed and dynamic priorities, and share
resources using the Immediate Priority Ceiling protocol. Interrupts always pre-empt the

Chapter 3 – Technological Platforms and Tools

54

running task to execute urgent operations required by peripherals. RT-Druid is the
Eclipse-based development environment for ERIKA Enterprise that allows writing,
compiling, and analyzing an application. RT-Druid is composed by a set of plug-ins for
the Eclipse Framework [48]. The RT-Druid Core plug-in contains all the internal
metamodel representation, providing a common infrastructure for the other plug-ins,
together with ANT scripting support.

The RT-Druid Code Generator plug-in implements the OIL file editor and
configurator (for a review on OSEK/VDX standard and OIL language see [49]), together
with target independent code generation routines for ERIKA Enterprise. The RT-Druid
Schedulability Analysis plug-in provides the Schedulability Analysis framework,
implementing algorithms like scheduling acceptance tests, sensitivity analysis, task
offset calculation, thus including a set of design tools for modelling, analyzing, and
simulating the timing behaviour of embedded real-time systems.

3.6 Open-ZB Toolset
The Open-ZB toolset for the IEEE 802.15.4/ZigBee protocols is available at [19].

3.6.1 Open-ZB TinyOS protocol stack
The Open-ZB [19] development efforts include the implementation of the IEEE 802.15.4
Data Link Layer and a part of the ZigBee Network Layer. This protocol stack
implementation is transversal to all experiments described in this Thesis, namely on
Chapters 4, 5, 6 and 8. The future objectives of the Open-ZB are to implement the full
IEEE 802.15.4 protocol stack and the full functionalities of the ZigBee Network Layer.

The first version of the IEEE 802.15.4 implementation only supported the MICAz
motes [25] and it was conditioned to that hardware platform. The latest version also
supports the TelosB [26] hardware platform.

The Open-ZB protocol stack implementation has three main blocks: (1) the hardware
abstraction layer, including the IEEE 802.15.4 physical layer and the timer module
supporting both MICAz and TelosB mote platforms; (2) the IEEE 802.15.4 MAC sub-
layer; and (3) the ZigBee Network Layer. The implemented features of the IEEE
802.15.4 include the slotted version of CSMA/CA algorithm, allowing the testing and
parameterization of its variables, the different types of transmission scenarios (e.g.
direct, indirect and GTS transmissions), association of the devices, channel scans (e.g.
energy detection and passive scan), beacon management and other mechanisms. Other
IEEE 802.15.4 features were left out of this implementation version because they are not
needed for the current research efforts. Features that are not currently supported include
the unslotted version of the CSMA/CA, the active and orphan channel scan, the use of
extended addressing fields in normal data transmissions.

In the ZigBee Network Layer, the currently supported features comprise the data
transfer between the Network Layer and the MAC sub-layer, the association mechanisms
and the network topology management (e.g. cluster-tree support by the ZigBee
Addressing schemes) and routing (e.g. neighbour routing and tree-routing). Security is
not supported yet.

We have implemented the beacon-enabled mode of the IEEE 802.15.4 MAC sub-
layer and the required functionalities in the ZigBee Network Layer to support cluster-
tree topologies. TinyOS v1.16 was used over the MICAz and TelosB motes. More

Chapter 3 – Technological Platforms and Tools

55

recently, though still under testing, we ported our stack to TinyOS v2.0, keeping the
same software architecture, as a result from our collaboration with the TinyOS Network
Protocol Working Group [20] to implement a ZigBee compliant stack for TinyOS 2.0.

Related implementations and hardware
There are several implementations of the IEEE 802.15.4/ZigBee protocols supported by
different hardware platforms [49-59]. These were developed in C language and
programmed directly in the microcontroller without any supporting operating system
(like TinyOS). Also, in some implementations, the source code is not open, enabling just
the implementation of top level applications using a pre-defined interface set. In
addition, these implementations can only be used in the provided hardware platform.
Additionally these implementations only support the non-beacon enabled mode,
therefore allowing the construction of ZigBee standard mesh networks (refer to Section
2.1.1), but not of beacon-enabled Star and Cluster-Tree networks.

The Ember [50] EmberZNet, compliant with the 2006 ZigBee specification, solution
works with the EM250 System on Chip and EM260 ZigBee co-processor [50, 51].
Freescale Semiconductor [53] also provides a commercial implementation compliant
with the 2006 ZigBee specification, the BeeStack. The software stack supports several
Freescale chip platforms, such as the MC13192 [54] and the MC13201 [55].

The IA USB Dongle [56], developed by Integration Associates [57] provides an USB
hardware with device drivers that implement a 2006 ZigBee compliant stack. The
provided drivers allow the integration of the dongle with different operating systems.
The source code is not provided.

Texas Instruments developed the Z-Stack [58] that is compliant with the ZigBee
2006 specification and supports multiple platforms including the CC2431 System-on-
Chip [59], the CC2420 [28] and MSP430 platforms. The Z-Stack is a free
implementation developed in C language. The ATMEL AVR Z-Link [60] is another
IEEE 802.15.4 compliant platform that includes a free stack implementation in C with
available source code.

Besides the above mentioned companies there are several others with ZigBee
solutions. Nevertheless, only the mesh network topologies are supported and the
software implementations are limited. Most of these companies are semiconductor
companies dedicated to hardware development.

Refer to [61] for a full list of ZigBee compliant platforms.

Software Architecture
The Open-ZB implementation has three main TinyOS components: the Phy, the Mac and
the NWL (Figure 25). The Mac and the NWL are shared by the two platforms (MICAz
and the TelosB) and there are two different Phy components, one for each platform. At
compilation time, the Phy component is selected according to the envisaged platform.
The need of two different Phy components is due to the fact that the TinyOS hardware
specific modules are different for each platform. Also, the two platform differ in the
hardware timers they provide, leading to two different timer modules (the TimerAsync)
with the purpose of maintaining all asynchronous timer events of the Mac layer (e.g.
beacon interval, superframe duration, time slots and backoff periods). Nevertheless, the
software architecture is the same for both platforms.

Chapter 3 – Technological Platforms and Tools

56

Figure 25 - Protocol stack software architecture

Table 4 presents the layered view of the different TinyOS components and interfaces
of the IEEE 802.15.4/ZigBee protocol stack implementation. The organization in
modules enables the easy and fast development of adaptations/extensions to the current
implementation. Each of these modules makes use of auxiliary files to implement some
generic functions (e.g. functions for bit aggregation into variable blocks), constants
declaration (e.g. layer constants), enumerations (e.g. data types, frame types, response
status) and data structure definitions (e.g. frame construction data structures).

The interface files (Figure 25 right side) are used to bind the components and
represent one Service Access Point (SAP). Each of these interfaces provide functions
that are called from the higher layer module and are executed/implemented in the lower
layer module. The interfaces also provide functions used by the lower layer modules to
signal functions that are executed/implemented in the higher layer modules. For example
the PD_DATA.nc interface is used by the MacM module to transfer data to the PhyM
module, that is going to be transmitted, and also enables the signalling by the PhyM in
the MacM of received data.

Chapter 3 – Technological Platforms and Tools

57

Table 4 - Functionalities of the implemented protoc ol stack components [62]

Component Functionalities

PHY

Activation and deactivation of the radio transceiver;
Energy detection within the current channel;
Transceiver data management, Received Signal Strength Indication (RSSI)
readings and channel frequency selection;
Clear Channel Assessment (CCA) procedure for the CSMA/CA mechanism;
Data transmission and reception management.

MAC

Beacon generation if the device is a Coordinator;
Synchronization services;
PAN association and disassociation procedures;
CSMA/CA as a contention access mechanism;
GTS management mechanism.

NWL

Definition of the network topology (by enabling the device operation as a ZC,
ZR or ZED);
Association mechanisms;
ZigBee addressing schemes;
Maintenance of neighbour tables;
Tree-Touting.

Figure 26 depicts the relations between different components of the IEEE

802.15.4/ZigBee protocol stack implementation. Note that some components used in our
IEEE 802.15.4/ZigBee protocol stack implementation are already part of the TinyOS
operating system, namely the hardware components (e.g. the HPL<…>.nc and the
MSP430<…>.nc modules).

Figure 26 - TinyOS implementation diagram [62]

Chapter 3 – Technological Platforms and Tools

58

In this implementation, there is no direct interaction with the hardware. In fact,
TinyOS already provides hardware drivers forging a hardware abstraction layer used by
the Phy component. In Figure 26, observe that the components filled in white are
hardware components already provided by the TinyOS operating system.

Refer to an extended implementation technical report in [62] for a detailed
description of the implementation functions, variables and protocol mechanisms.

3.6.2 The Open-ZB IEEE 802.15.4 Simulation Model
The OPNET Modeler [42] is an industry discrete-event network modelling and
simulation environment. It includes libraries of networking technologies and
communication protocols, such as the Transmission Control Protocol / Internet Protocol
(TCP/IP), hypertext transfer protocol (HTTP), open shortest path first routing (OSPF),
asynchronous transfer mode (ATM), frame relay, IP-QoS, 802.11, or Wi-Fi, and 802.16,
or even WiMAX. These libraries provide the building blocks used to generate models of
networks. One of the several add-on modules available from OPNET is the wireless
module. It extends the functionality of the OPNET Modeler with modelling, simulation
and analysis of wireless networks. Our simulation model [65] builds on the wireless
module, an add-on that extends the functionality of the OPNET Modeler with accurate
modelling, simulation and analysis of wireless networks. The simulation model
implements physical and medium access control layers defined in the IEEE 802.15.4-
2003 standard. The OPNET Modeler is used for developing, namely due to its accuracy
and to its sophisticated graphical user interface.

The actual version of the simulation model only supports the star topology where the
communication is established between devices, called inside the model End Devices, and
a single central controller, called PAN Coordinator. Each device operates in the network
must have a unique address.

There are two types of nodes inside the simulation model:

− wpan_analyzer_node: This node captures global statistical data from whole
PAN (one within PAN).

− wpan_sensor_node: This node implements the IEEE 802.15.4-2003 standard
as was mentioned above.

The structure of the IEEE 802.15.4 sensor nodes (wpan_sensor_node) used in the

simulation model is composed of four functional blocks (Figure 27):

1. The Physical Layer consists of a wireless radio transmitter (tx) and receiver

(rx) compliant to the IEEE 802.15.4 specification, operating at the 2.4 GHz
frequency band and a data rate equal to 250 kbps. The transmission power is set
to 1 mW and the modulation technique is Quadrature Phase Shift Keying
(QPSK).

2. The MAC Layer implements the slotted CSMA/CA and GTS mechanisms. The
GTS data traffic (i.e. time-critical traffic) incoming from the application layer is
stored in a buffer with a specified capacity and dispatched to the network when
the corresponding GTS is active. The non time-critical data frames are stored in
an unbounded buffer and based on the slotted CSMA/CA algorithm are
transmitted to the network during the active CAP. This layer is also responsible

Chapter 3 – Technological Platforms and Tools

59

for generating beacon frames and synchronizing the network when a given node
acts as PAN Coordinator.

3. The Application Layer consists of two data traffic generators (i.e. Traffic
Source and GTS Traffic Source) and one Traffic Sink. The Traffic Source
generates unacknowledged and acknowledged data frames transmitted during
the CAP (uses slotted CSMA/CA). The GTS Traffic Source can produce
unacknowledged or acknowledged time-critical data frames using the GTS
mechanism. The Traffic Sink module receives frames forwarded from lower
layers and performs the network statistics.

4. The Battery Module computes the consumed and the remaining energy levels.
The default values of the current draws are set to those of the MICAz mote
specification [25].

Figure 27 - The IEEE 802.15.4 [65]

The actual version of the simulation model is 2.0 and is not backward-compatible to
the previous version 1.0, meaning that the devices conforming to version 1.0 are not
capable of joining and functioning in a PAN composed of devices conforming to version
2.0 and vice-versa. The actual version 2.0 of the simulation model implements the
following functions in accordance with the IEEE 802.15.4-2003 standard.

Supported (implemented) features:

− Beacon-enabled mode
− Slotted CSMA/CA MAC protocol
− Frame formats (beacon, command, ack, mac_packet)
− Physical layer characteristics
− Computation of the power consumption (MICAz and TelosB (TmoteSky)

motes supported) - Battery Module

idlewait_beaconinit gts_slot

init_backoff

backoff_timerCCA

MAC Process Model

The slotted CSMA/CA mechanism

(GTS_STOP)

(PACKET_READY_TO_SEND)(CCA_END)/queue_status()

(DEAFAULT_INTRPT)/queue_status()

(default) (default)

(default)

(default)

(BACKOFF_EXPIRED && CAP_IS_ACTIVE)/wpan_cca_defer()

(GTS_START)/wpan_gts_slot_init()

(CHANNEL_BUSY)/wpan_backoff_update()

init idle

generate

stop

(PACKET_GENERATE)

(STOP)

(default)

GTS Traffic Source Process Model

(default)

(BACKOFF_EXPIRED && !CAP_IS_ACTIVE)/cap_is_not_active()

Sensor Node Model APPLICATION LAYER

MAC LAYER

PHYSICAL LAYER

Battery

Traffic Sink Traffic Source

UNACK
PACKETS

ACK
PACKETS

Synchro wpan_mac

tx rx

GTSTraffic Source

(default)

GTS Permit

User Defined Attributes

Start Time (seconds)
Stop Time (seconds)
Length (slots)
Direction
Buffer Capacity (bits)

MSDU Interarrival Time
MSDU Size (bites)
Acknowledgement

Traffic Source

GTS Setting
GTS
Logging
IEEE 802-15-4
Battery
CSMA/CA Parameters
Traffic Source

name
model

SENSOR NODE

Chapter 3 – Technological Platforms and Tools

60

− Guaranteed Time Slot (GTS) mechanism (GTS allocation, deallocation and
reallocation functions)

− Generation of the acknowledged and unacknowledged application data (MAC
Frame payload = MSDU) transmitted during the Contention Access period
(CAP)

− Generation of the acknowledged or unacknowledged application data
transmitted during the Contention Free Period (CFP)

Non-supported features:

− Non beacon-enabled mode
− Unslotted CSMA/CA MAC protocol
− PAN management (association/disassociation)
− ZigBee Network Layer
− The values of all constants and variables in this simulation model are

considered for the 2.4 GHz frequency band with a data rate of 250 kbps, which
is supported by the MICAz or TelosB motes, for example. In this case, one
symbol corresponds to 4 bits. For other frequency bands and data rates it is
necessary to change appropriate parameters inside the simulation model (e.g.
the header file wpan_params.h).

For more details about the Open-ZB OPNET simulation model, please refer to the

technical report in [65].

Chapter 4
On the Performance Evaluation of the IEEE

802.15.4 Slotted CSMA/CA Mechanism

This chapter addresses the performance evaluation of the Slotted
CSMA/CA mechanism, both through an experimental testbed and
through simulation. The analysis tries to assess the impact of the choice
of Beacon Order (BO) and Backoff Exponent (BE), in the network
performance, based in known metrics like the Probability of Successful
Transmissions and Network Throughput as a function of the Offered
Load.

4.1 Introduction
The IEEE 802.15.4 Slotted CSMA/CA mechanism was evaluated with the purpose of
measuring its performance and the effectiveness of the available hardware platforms.
Moreover, this analysis permits to identify the mechanism limitations and may trigger
the proposal of improved schemes for specific purposes (e.g. reducing average delays,
improving the throughput).

The analysis was done for different network settings, in order to understand the
impact of some protocol parameters on the network performance, namely in terms of
Network Throughput (S) and Probability of Successful transmissions (Ps), given a
certain Offered Load (G). These performance metrics are based on an extensive study of
the Slotted CSMA/CA presented in [63].

The performance metrics analyzed in this work are the following.

− Network Throughput (S). It is the fraction of traffic correctly received by the

Network Analyzer, normalized by the network capacity of the IEEE 802.14.5
Physical Layer (250 kbps). The S(G) analysis of CSMA-like mechanisms was
first introduced in [64].

Chapter 4 – On the Performance Evaluation of the
IEEE 802.15.4 Slotted CSMA/CA Mechanism

62

− Success probability (Ps). This metric is computed as S divided by Gmac, i.e. Ps
= S / Gmac. It reflects the degree of reliability achieved by the network for
successful transmissions. We denote by Ps(G) the success probability as a
function of the offered load G.

4.2 Experimental and Simulation Testbeds
In order to accomplish this evaluation, an OPNET [42] simulation model [65] for the
IEEE 802.15.4 supporting the slotted CSMA/CA mechanism was used as a means to
compare experimental and simulation results, for the same scenarios.

In general, both the simulation and experimental scenarios consist of 1 PAN
Coordinator and ten End Devices generating traffic (data frames with 63 bytes of length)
at pre-programmed inter-arrival times (at the Application Layer) and a network/protocol
analyzer capturing all the data for later processing and analysis. We assume that the
generated data frames have a constant size and are equal in all nodes.

The global offered load (denoted as G) generated by all node's application layers
depends on the inter-arrival times, which are exponentially distributed (Poisson arrivals).
Basically, the performance of the slotted CSMA/CA mechanism will be evaluated as a
function of the offered load G in the network.

The simulation and the experimental scenarios are depicted in Figure 28 and Figure
29, respectively. In Figure 28 is possible to observe the network layout and the attributes
of each End Device node (wpan_sensor_node model).

Figure 28 - Simulation Model setup

Chapter 4 – On the Performance Evaluation of the
 IEEE 802.15.4 Slotted CSMA/CA Mechanism

63

Figure 29 depicts the experimental testbed, using MICAz motes. In general, the
hardware testbed consists of one Coordinator, ten end devices, one packet sniffer and
one configuration node.

The configuration node consists of a MICAz mote attached to a MIB510 [33] board
which provides a serial interface to a computer. This node is used to setup the message
inter-arrival times, frame size or any other network parameter of the traffic generating
nodes thus providing a way of changing the nodes configuration without the need of
reprogramming. This setting is done by simply sending a packet with all the network
parameters values embedded in the payload at the beginning of each run, thus enabling
the traffic generation of the end devices. In order to do this, a command is typed in the
terminal window of a computer connected to the MIB510 serial interface. At that point,
the end-devices already synchronized with the coordinator’s beacon, start transmitting
data frames. The data frames were embedded with the necessary data in their payload to
enable the analysis.

The packet analyser used to capture all the generated packets was the Chipcon
CC2420 Packet Analyser [37]. It generates a text file with all the received packets and
the corresponding timestamps. A parser application was developed to retrieve the
necessary data from the packet’s payload (by parsing the sniffer’s capture file) and
export it to a spreadsheet for processing and result analysis.

Figure 29 - The CSMA/CA performance evaluation test bed

Both the simulation and experimentation scenarios conditions are considered
identical. Nevertheless, it is reasonable to admit that the experimental results suffer from
uncontrollable factors, such as RF interferences, processing limitations and memory
constraints. Moreover, TinyOS also imposes some limitations that may impact in the
network behaviour since it is not a real-time operating system as described in Chapter 7.

Chapter 4 – On the Performance Evaluation of the
IEEE 802.15.4 Slotted CSMA/CA Mechanism

64

4.3 Performance Analysis

4.3.1 BO and SO effect
In this section the simulation and the experimental results are presented and briefly
analysed.

Setting BO and SO is one of the most important tasks of the PAN Coordinator. By
changing the inter-arrival times, it was possible to achieve different traffic loads (G
values). Figure 30 presents the results concerning Network Throughput (S) obtained
through simulation (Figure 30 (a)) and from the hardware testbed (Figure 30 (b)), for
different BO=SO settings).

(a) (b)

Figure 30 - Network Throughput for different BO

As expected, with low SO settings we achieve lower Network Throughput. This is
due to two factors. First, with lower SO settings the overhead of the beacon frame is
much more significant since beacons are more frequent. Second, CCA deference is more
frequent, which leads to more collisions at the start of each superframe. Increasing the
superframe order above SO = 5 has very little effect in the Network Throughput, since
the probability of deference is much lower, thus reducing the amount of collisions and
leading to a higher S around 68 %.

An example of the deference problem is illustrated in Figure 31, depicting a case
with three nodes with the same superframe configurations.

As depicted in Figure 31, if we consider greater superframe durations, node 3 can
start its transmission before nodes 1 and 2 wake up. These latter nodes will then sense
the channel busy (since node 3 is transmitting), and thus go to backoff with higher
backoff delay value (after increasing BE).

Therefore, the transmission deference problem is going to be more frequent with
lower superframe orders, as the interval between superframes is lower. The probability
of transmission deference is minimized with higher SO and when the nodes have
different SO enabling the transmissions with less challengers trying to access the
medium. As presented in Figure 30 (b), the same behaviour was observed with the
experimental testbed, however the maximum S achieved was lower than in the
simulation results (around 58 %).

Chapter 4 – On the Performance Evaluation of the
 IEEE 802.15.4 Slotted CSMA/CA Mechanism

65

Figure 31 - Transmission deference problem

Figure 32 (a and b) compares the transmission Success Probability (Ps) and the
offered load, for a given superframe order (SO). The results show that the probability of
a successful transmission is quite low when offered load increases, and particularly
lower for low SO due to the multiple collisions caused by deference as already
explained.

(a) (b)

Figure 32 - Probability of Success for different BO

The comparison between simulation and experimental results for two SO settings
(SO=7 and SO=1) is presented in Figure 33.

Chapter 4 – On the Performance Evaluation of the
IEEE 802.15.4 Slotted CSMA/CA Mechanism

66

Figure 33 - Experimental vs Simulation(BO=SO=7 and BO=SO=1)

Notice, that although the results are similar (the behaviour predicted by the simulation
results holds), there is a difference of approx 10% between simulation and experimental
throughput results. We believe that this is mainly because the simulation model does not
consider the physical constraints of the MICAz mote, especially the processing power,
the TinyOS constraints and overheads and the normal interferences of a real wireless
medium.

4.3.2 Backoff exponent
The backoff exponent (BE) is an important parameter in the backoff algorithm of slotted
CSMA/CA. It enables the computation of the random backoff delay before trying to
access the channel. The initial value of macMinBE is 3 but can be set in the range of [0,
5]. Setting this value to 0 disables collision avoidance during the first iteration of the
algorithm.

Chapter 4 – On the Performance Evaluation of the
 IEEE 802.15.4 Slotted CSMA/CA Mechanism

67

The purpose of this section is to study the impact of the initialization value
macMinBE on network performance. We run the experiments (both in the simulator and
in the hardware deployment), for different values of macMinBE - from 0 to 5. For each
configuration, we vary the inter-arrival times of the packet generation in each node to
have different offered loads with a constant packet size. Each curve corresponding to a
given macMinBE is obtained for thirteen or more different inter-arrival times.

As presented in Figure 34 the network throughput depends on the initialization value
macMinBE, but, contrarily to what is expected, the network saturation throughput
decreases when increasing the macMinBE. However, this does not mean a worse
behavior for higher macMinBE. In fact, the macMinBE has an important influence on the
amount of traffic sent to the network by the MAC sublayer (Gmac), as it is shown in
Figure 35. Figure 35 presents the offered load produced by the MAC sublayer (Gmac)
as a function of the offered load of the application layer (G). The remaining part of the
traffic is still queued waiting for service or dropped in case of limited buffer sizes like in
the case of the hardware testbed.

Figure 34 - Impact of macMinBE value in the Network Throughput

In a small-scale network with only ten nodes, the increase of macMinBE reduces the
load effectively transmitted in the network. This is because high backoff delays will
cause more wasted backoff periods not used by any of the competing nodes. This is
explained by the small number of competing nodes in the network. As it is expected,
increasing the backoff delay interval (starting with high macMinBE) results in a better
success probability, while avoiding collisions in smallscale WSNs. Most of the traffic
sent is correctly received for high macMinBEs.

Chapter 4 – On the Performance Evaluation of the
IEEE 802.15.4 Slotted CSMA/CA Mechanism

68

(a) (b)

Figure 35 - Offered Load for different macMinBE values

Again, the amount of traffic sent in the case of the experimental testbed (Figure 35
(b)) is approximately 20% lower than the one represented in simulation (Figure 35 (a)).
We believe this is in fact the cause for the lower throughput verified in the previous
experiments. The hardware platforms are unable to transmit such a high amount of
traffic thus resulting in lower throughputs.

4.4 Concluding remarks
Simulation and experimental results allowed observing similar behaviours, which
consolidates the consistency of the implemented version of the Slotted CSMA/CA
mechanism and of the IEEE 802.15.4 protocol in general.

As it could be expected, the simulation results for Throughtput and Probability of
Success are higher that the experimental results. We believe that this is mainly because
the simulation model does not consider some of the physical constraints of the MICAz
mote, especially the processing power, the internal delays due to TinyOS overheads and
the normal interferences of a real wireless medium.

Considering the exemplifying case of the experiment where SO = BO = 7, Figure 33
depicts the Throughput and the Success Probability curves for different network loads.
In this figure, it is possible to observe that the simulation and experimental curves have
the same behaviour. One of the reasons for a lower performance with lower SO is due to
a more probability of transmission deference (e.g. number of frames that were deferred
to the next superframe because the device could not send them in the current one). The
transmission deference problem is more frequent with lower Superframe Orders (SO) as
the Superframe Duration is smaller. Another factor for the lower performance is the
overhead of the beacon frame transmission, which is more significant in lower SO
values.Regarding the macMinBE setting, it has an important influence on the amount of
traffic sent to the network by the MAC sublayer (Gmac). In a small-scale network with
only ten nodes, the increase of macMinBE reduces the load effectively transmitted in the
network, which has a positive impact on the success probability (S/Gmac) for small-
scale WSNs. Therefore, most of the traffic sent is correctly received for high
macMinBEs.

Chapter 5
On a Hidden-Node Avoidance Mechanism

This chapter describes H-NAMe, a simple yet efficient distributed
mechanism to overcome the hidden-node problem. H-NAMe relies on a
grouping strategy that splits each cluster of a WSN into disjoint groups
of non-hidden nodes and then scales to multiple clusters via a cluster
grouping strategy that guarantees no transmission interference between
overlapping clusters. The feasibility of H-NAMe is demonstrated via an
experimental test-bed, showing that it increases network throughput
and transmission success probability up to twice the values obtained
without H-NAMe.

5.1 Introduction
The hidden-node problem has been shown to be a major source of Quality-of-Service
(QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the
limited communication range of sensor nodes, link asymmetry and the characteristics of
the physical environment. In wireless contention-based Medium Access Control
protocols, if two nodes that are not visible to each other transmit to a third node that is
visible to the formers, there will be a collision as illustrated in Figure 36 – usually called
hidden-node or blind collision.

This problem leads to the degradation of the following three performance metrics.

1. Throughput, which denotes the amount of traffic successfully received by a
destination node and that decreases due to additional blind collisions.

2. Energy-efficiency that decreases since each collision causes a new retransmission.

3. Transfer delay, which represents the time duration from the generation of a
message until its correct reception by the destination node, and that becomes
larger due to the multiple retransmissions of a collided message.

Chapter 5 – On a Hidden-Node Avoidance Mechanism

70

Figure 36 - A hidden-node collision

Figure 37 presents an example obtained with our OPNET [42] simulation model [65]
for the IEEE 802.15.4 protocol, just to highlight the negative impact of the hidden-node
problem. We considered a star network spanning on a square surface (100x100 m2) with
100 nodes, where traffic generation followed a Poisson distribution. The throughput is
shown for different transmission ranges of the nodes. We vary the transmission range of
the nodes by setting different receiver sensitivity levels. The degradation of the
throughput performance due to hidden-node collisions is clearly noticeable in Figure 37.
This is due to the increase of the hidden-node collision probability when decreasing the
transmission range.

Figure 37 - Hidden-node impact on network throughpu t

In the literature, several mechanisms have been proposed to resolve or mitigate the
impact of the hidden-node problem in wireless networks. A thorough enumeration of
these techniques is available at [14].

Chapter 5 – On a Hidden-Node Avoidance Mechanism

71

These techniques can be categorized as follows:

− The busy tone mechanism, [67], [68] and [69];
− RTS/CTS mechanism, [70], [71], [72] and [73];
− Carrier Sense Tuning, [74], [75] and [76];
− Node Grouping [77];

However, to our best knowledge, no effective solution to this problem in WSNs was

proposed so far.
This Chapter presents an efficient solution to the hidden-node problem in

synchronized cluster-based WSNs. Our approach is called H-NAMe and is based on a
grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden
nodes. It then scales to multiple clusters via a cluster grouping strategy that guarantees
no transmission interference between overlapping clusters.

The recently standardized IEEE 802.15.4/ZigBee protocol stack, which is considered
as a promising candidate for WSNs (e.g. [66]), supports no hidden-node avoidance
mechanism. This leads to a significant QoS degradation as already seen in Figure 37.
The resolution of this problem is of paramount importance for improving reliability,
throughput and energy-efficiency. In this line, we show the integration of the H-NAMe
mechanism in the IEEE 802.15.4/ZigBee protocols, requiring only minor add-ons and
ensuring backward compatibility with their standard specifications. We developed an
experimental test-bed and carried out a significant number of experiments showing that
H-NAMe increases network throughput and transmission success probability up to
100%, against the native IEEE 802.15.4 protocol.

We believe that the integration of the H-NAMe mechanism in IEEE 802.15.4/ZigBee
may be relevant in leveraging the use of these protocols in WSNs and in enriching future
versions of their specifications.

5.2 The H-NAMe mechanism

5.2.1 System model
We consider a multiple cluster wireless network and we assume that in each cluster there
is at least one node with bi-directional radio connectivity with all the other cluster nodes
(Figure 38). We denote this node as Cluster-Head (CH). At least the CH must support
routing capabilities, for guaranteeing total interconnectivity between cluster nodes.

Nodes are assumed to contend for medium access during a Contention Access Period
(CAP), using a contention-based MAC (e.g. CSMA family). A synchronization service
must exist to assure synchronization services to all network nodes, either in a centralized
(e.g. GPS, RF pulse) or distributed fashion (e.g. IEEE 802.11 TSF, ZigBee). We also
assume that there is interconnectivity between all network clusters (e.g. mesh or tree-like
topology).

Chapter 5 – On a Hidden-Node Avoidance Mechanism

72

Figure 38 - Network model

Note that although our current aim is to use the H-NAMe mechanism in the IEEE
802.15.4/ZigBee protocols, the system model is generic enough to enable the application
of H-NAMe to other wireless communication protocols (e.g. IEEE 802.11).

5.2.2 Intra-cluster grouping
Initially, all nodes in each cluster share the same CAP, thus are prone to hidden-node
collisions. The H-NAMe mechanism subdivides each cluster into node groups (where all
nodes have bi-directional connectivity) and assigns a different time window to each
group during the CAP. The set of time windows assigned to node group transmissions is
defined as Group Access Period (GAP), and must be smaller or equal to the CAP. In this
way, nodes belonging to groups can transmit without the risk of hidden-node collisions.

For the intra-cluster grouping mechanism, we start by assuming that there is no
interference with adjacent clusters, since that might also instigate hidden-node collisions.

The H-NAMe intra-cluster grouping strategy comprises four steps, presented
hereafter and illustrated in Figure 39.

Chapter 5 – On a Hidden-Node Avoidance Mechanism

73

Figure 39 - Intra-cluster grouping mechanism

A message sequence diagram is presented in Figure 40.

Figure 40 - Intra-cluster grouping message sequence chart

Chapter 5 – On a Hidden-Node Avoidance Mechanism

74

Step 1 - Group Join Request
Let us consider a node Ni that wants to avoid hidden-node collisions. Node Ni sends a
Group-join.request message to its cluster-head CH, using a specific broadcast address
referred to as group management address @GM in the destination address field. @GM is
defined as an intra-cluster broadcast address, which must be acknowledged by the
cluster-head (in contrast to the typical broadcast address). Obviously, the
acknowledgment message (ACK) will be received by all cluster nodes, since the cluster-
head is assumed to have bi-directional links with all of them.
Such an acknowledged broadcast transmission ensures that the broadcasted message is
correctly received by all the neighbors of the broadcasting node (recalling that we
assume no inter-cluster interference). In fact, if any collision occurs inside the cluster
during the transmission of the broadcast message, then the cluster-head CH will certainly
be affected by this collision since it is in direct visibility with all nodes in its cluster. If
no collision occurs, then the broadcast message will be correctly received by all nodes
and acknowledged by the cluster-head.
Hence, since the Group-join.request message is sent using the group management
address @GM, CH sends back an ACK frame to Ni notifying it of the correct reception of
the group join request.
On the other side, all cluster nodes in the transmission range of Ni (thus received the
Group-join.request message) and that already belong to a group, check if they have Ni
already registered as a neighbor node in their Neighbor Table. We assume that the
Neighbor Table is created and updated by each node during network set-up and run-time
phases. The Neighbor Table stores the addresses of neighbor nodes and the link
symmetry information, which specifies if the link with a corresponding neighbor is bi-
directional or not. If a node hears the Group-join.request message and does not belong to
any group (it is transmitting in the CAP, thus not in the GAP), then it simply ignores the
message. On the other hand, if a node Nj is already in a group and hears the join
message, then it records the information about Ni in its Neighbor Table, if it is not
registered yet, and will update the link symmetry with direction Ni→Nj.

Step Status. At the end of this step, each node in the transmission range of Ni knows
that node Ni is asking for joining a group and registers the neighborhood information of
Ni. This only ensures a link direction from Ni to this set of nodes. The link symmetry
verification is the purpose of the next step.

Step 2 - Neighbor Notification
After receiving the ACK frame of its Group-join.request message, node Ni triggers the
aGroupRequestTimer timer, during which it waits for neighbor notification messages
from its neighbors that heard its request to join a group and that already belong to a
group. Choosing the optimal duration of this timer is out of the scope of this Thesis, but
it must be large enough to permit all neighbors to send their notification.

During that time period, all nodes that have heard the join request and that already
belong to a group must initiate a Neighbor.notify message to inform node Ni that they
have heard its request. One option is that a node Nj directly sends the Neighbor.notify
message to node Ni with an acknowledgement request. The drawback of this alternative
is that node Nj cannot know when its Neighbor.notify message fails to reach Ni (i.e. ACK
frame not received), whether the lost message is due a collision or to the non-visibility of
Ni. No clear decision can be taken in that case. A better alternative is that node Nj sends

Chapter 5 – On a Hidden-Node Avoidance Mechanism

75

the Neighbor.notify message using the group management address @GM in the
destination address field. As previously mentioned, the correct reception of the
Neighbor.notify message by the cluster-head CH followed by an ACK frame means that
this message is not corrupted by any collision and is correctly received by all nodes in
the transmission range of Nj. Particularly, node Ni will correctly receive the neighbor
notification message if it is reachable from node Nj; otherwise, the link between Ni and
Nj is unidirectional (direction Ni→Nj). If Ni receives the Neighbor.notify message from
Nj, then it updates its Neighbor Table by adding as a new entry the information on Nj
with Link Symmetry set to bi-directional (Ni↔Nj), if this information has not been
recorded yet. If Nj has already been registered as a neighbor node, Ni must be sure to set
the Link Symmetry property to bi-directional. This procedure is executed by all nodes
responding to the Group-join.request message during the timer period
aGroupRequestTimer.

Step Status. At the end of this step, the requesting node Ni will have the information
on all bi-directional neighbors that have already been assigned to groups. Since Ni does
not know the number of nodes in each group, it cannot decide alone which group it will
join. The group assignment is the purpose of the next steps.

Step 3 – Neighbor Information Report
The cluster-head CH is assumed to be the central node that manages all the groups in

its cluster. Thus, CH has a full knowledge of the groups and their organization. For that
reason, after the expiration of the aGroupRequestTimer timer, node Ni sends the
Neighbor.report message, which contains the list of its neighbor nodes (that have been
collected during the previous step), to its cluster-head CH (using the CH address @CH as
a destination address). The CH must send back an ACK frame to confirm the reception.
Then, node Ni waits for a notification from CH that decides whether Ni will be assigned
to a group or not. CH must send the group assignment notification before the expiration
of a time period equal to aGroupNotificationTimer. If the timer expires, node Ni
concludes that its group join request has failed and may retry to join a group later.

Step Status. At the end of this step, Ni will be waiting for the group assignment
confirmation message from CH, which tries to assign Ni to a group based on its neighbor
information report and the organization of the groups in its cluster. The group
assignment procedure and notification is presented in the next step.

Step 4 - Group Assignment Procedure
The cluster-head CH maintains the list of existing groups. After receiving from node Ni
the Neighbor.report message containing the list of its bi-directional neighbors, CH starts
the group assignment procedure to potentially assign Ni to a given group, according to its
neighborhood list and available resources. In each cluster, the number of groups must be
kept as low as possible in order to reduce the number of state information that needs to
be managed by the CH.

In each cluster, the number of groups must be kept as low as possible. The authors in
[77] showed that, with the assumption of a circular radio range and a bi-directional link
between any two nodes that are visible to each other in the cluster, the maximum number
of groups does not exceed five. However, it can be easily seen in Figure 41, that the
maximum number of groups with such a condition does not exceed six. This is simply

Chapter 5 – On a Hidden-Node Avoidance Mechanism

76

because the area of the circular range of the cluster head can be decomposed into six
equal regions defined by isosceles triangles. The maximum distance between two points
into the same region is always lower than or equal to the radius of the circle.

Figure 41 - Maximum number of groups in a cluster a ssuming bi-directional links and
circular radio range

Note that without the assumption of a bi-directional link between each couple of
nodes inside a cluster, the maximum number of groups cannot be controlled in case of
asymmetric links due to the presence of obstacles or different transmission ranges of
different nodes in the cluster. Here, we consider the case of asymmetric links since it is
more realistic. We impose that the number of groups inside each cluster must not exceed
aMaxGroupNumber, which should be equal to six by default. This parameter can be set
differently by the cluster head CH.

The group assignment algorithm is presented in Figure 42.
Upon reception of the Neighbor.report message, the cluster-head CH checks the
neighbor list of the requesting node Ni. If there is a group whose (all) nodes are
neighbors of node Ni, then Ni will be associated to that group. The cluster-head runs the
following algorithm (as in Fig. 7). For each neighbor node Nj in the list, the cluster-head
CH increments Count [group_index (Nj)], which denotes the number of neighbor nodes
of Ni that belong to the group of the currently selected neighbor Nj. Note that
group_index (Nj) denotes the index of the group of node Nj. If this number is equal to the
actual number of nodes of the latter group, it results that all nodes in this group are
neighbors of node Ni. Thus, Ni can be assigned to this group since it is visible to all its
nodes. If the list of neighbors is run through without satisfying such a condition, the
cluster-head CH will create a new group for Ni if the number of groups is lower than
aMaxGroupNumber; otherwise, the Group-join.request message of Ni will be considered
as failed. So it must transmit during the CAP (not in the GAP), and may retry a new
group join request later.

At the end of the group assignment process, CH sends a Group-join.notify message to
node Ni to notify it about the result of its group join request.

If the requesting node is assigned a group, then it will be allowed to contend for
medium access during the time period reserved for the group, which is called Group
Access Period (GAP). This information on the time period allocated to the group is
retrieved in the subsequent frames sent by CH.

Chapter 5 – On a Hidden-Node Avoidance Mechanism

77

 Group Assignment Algorithm
1 int aMaxGroupNumber; // maximum number of groups

2 in a cluster

3 Type Group;

4 Group G; // list of all groups G[1]..G[aMaxGroupNumber]

5 |G[i]| = number of elements in group G[i]

6 Type Neighbor_List; // {Np .. Nq)= Neighbor List of

7 the requesting Node N

8 int Count [|G[i]|] = {0, 0, .., 0}; // Number of nodes in Neighbor

9 List that belongs to the group G[i]

10 int grp_nbr; // the current number of groups managed by CH

11 // group_index function returns the group index of the node NL[i]

12 function int group_index(Neighbor_List NL, int i)

13 //the group assignment function.

14 int group_assign (Neighbor_List NL, Group G, int grp_nbr) {

15 int res = 0;

16 int index = 0;

17 while ((res = = 0) and (index < |NL|)) {

18 if (++Count[group_index (NL, index)] = =

19 |G[group_index (NL, index++])|)

20 res = group_index (NL, --index); break;

21 }

22 if (res = = 0) { //that means that no group is found

23 if (grp_nbr = = aMaxGroupNumber) return (res)

24 else return (++grp_nbr);

25 }

26 else return (res);

27 }

Figure 42 - Group assignment algorithm

Importantly, the complexity of the algorithm for assigning a group to a node depends
on the number of neighbours of this node. In any case, it is smaller than O(N), where N
is the number of nodes in the cluster, thus has significantly lower complexity than the
O(N²) complexity of the algorithm for group assignment proposed in [77]. Moreover, in
that proposal each new node that enters the network is unaware of the existing groups
and will cause a hidden-node collision, after which the groups are re-constructed. In our
mechanism, a node is not allowed to transmit during the time period allocated to groups
(only being able to communicate during the CAP) until it is assigned to a given group.

Group load-balancing: Note that the algorithm presented in Figure 42 stops when a
first group of non-hidden nodes is found for the requesting node. However, a requesting
node can be in the range of two different groups, i.e. all nodes in two separate groups are
visible to the requesting node. In this case, one possible criterion is to insert the
requesting node into the group with the smallest number of nodes, for maintaining load-
balancing between the different groups. For that purpose, the algorithm should go
through all the elements of the neighbour list and determine the list of groups that satisfy
the condition in lines 18 and 19 of the algorithm (Figure 42). In this case, if more than

Chapter 5 – On a Hidden-Node Avoidance Mechanism

78

one group satisfies this condition, Ni will be inserted in the group with the smallest
number of nodes.

Bandwidth allocation: The time-duration of each group in the GAP can be tuned by
the cluster-head to improve the mechanism efficiency. This can be done according to
different strategies, namely: (i) evenly for all the node groups; (ii) proportionally to the
number of nodes in each group; (iii) proportionally to each group’s traffic requirements.
How to perform this assignment is not tackled in this Thesis.

5.2.3 Scaling H-NAMe to multiple-cluster networks
Solving the hidden-node problem in multiple-cluster networks involves greater
complexity due to inter-cluster interference. The assumption that there is no interference
from other clusters made before is no longer valid. Hence, even if non-hidden node
groups are formed inside all clusters, there is no guarantee that hidden-node collisions
will not occur, since groups in one cluster are unaware of groups in adjacent clusters.

Obviously, the best strategy for completely avoiding the inter-cluster hidden-node
problem is to reserve an exclusive time window for each cluster. However, this strategy
is definitely not adequate for large-scale sensor networks, where the number of
clusters/groups is significantly high.

Our approach consists in defining another level of grouping by creating distinct
groups of clusters, whose nodes are allowed to communicate during the same time
window. Therefore, each cluster group will be assigned a portion of time, during which
each cluster in the cluster group will manage its own Group Access Period (GAP),
according to the intra-cluster mechanism presented in Section 5.2.2.

The cluster grouping concept is illustrated in Figure 38. As shown, clusters A and B
have overlapping radio coverage, which can lead to inter-cluster interference and thus to
hidden-node collisions. For this reason, they will be assigned to different cluster groups
that are active in different time windows. The same applies for cluster pairs (C, D), (A,
C) and (B, D). Therefore, our cluster grouping mechanism forms two cluster groups:
Group 1, which comprises clusters A and D, and Group 2, containing clusters B and C.

The challenge is on finding the optimal cluster grouping strategy that ensures the
minimum number of cluster groups. We define a cluster group as a set of clusters whose
nodes are allowed to transmit at the same time without interference.

Cluster grouping and time window scheduling strategies were proposed and
effectively implemented and validated in [78], for engineering ZigBee cluster-tree
WSNs. We propose a grouping criterion and a graph colouring algorithm for an efficient
scheduling of the cluster groups activity.

5.3 H-NAMe in IEEE 802.15.4/ZigBee
In this section, we explain how to instantiate the H-NAMe mechanism to the IEEE
802.15.4 protocol, namely addressing beacon-enabled cluster-tree networks. This
topology is scalable and enables energy-efficient (dynamically adaptable duty-cycles per
cluster) and real-time communications. In addition, the cluster-tree topology fits into the
H-NAMe network model.

Basically, the idea is that each node group (resulting from the H-NAMe mechanism)
will be allocated a time window in each superframe duration. The idea is to use part of
the CAP for the Group Access Period (GAP), as illustrated in Figure 43. Note that a

Chapter 5 – On a Hidden-Node Avoidance Mechanism

79

minimum duration of 440 symbols must be guaranteed for the CAP in each superframe
[24].

Figure 43 - CAP, GAP and CFP in the Superframe

In our intra-cluster grouping strategy, a node that has been assigned a group will track
the beacon frame for information related to the time window allocated to its group, and
will contend for medium access during that period with the other nodes of the same
group. We propose the GAP Specification field in Figure 44 to be embedded in the
beacon frame (such a specification is missing in [77]).

Figure 44 - GAP specification field of a beacon fra me

The GAP is specified by the Group ID field that identifies the node group. Up to 8
groups per cluster can be defined. The time window in the superframe is specified by a
given number of Backoff Periods (BP). A practical problem is that the number of a
backoff period in a superframe may be quite large for high superframe orders (up to 16
time slots * 216 BP/time slot), which requires a huge amount of bits in the field to
express the starting BP and the final BP for each group. The objective is to maintain as
low overhead as possible for the specification of a given group. For that purpose, a group
is characterized by its start time slot and end time slot (between 0 and 15) and the
corresponding backoff period offsets. The start and end offsets for the time duration of a
group is computed as follows:

 (Start/End) Backoff Period Offset * 2SORelative Offset=
The choice of a Backoff Period Offset sub-field encoded in two bits is argued by the

fact that the minimum number of backoff periods in a time slot is equal to 3 for (SO = 0).
Hence, for SO > 0, each time slot will be divided into three parts to which the start/end
instant of a given group access period should be synchronized.

This GAP implementation approach only requires two bytes of overhead per group.
The maximum number of groups depends on the SO values, since lower superframe
orders cannot support many overhead in the beacon frame due their short superframe
durations. Also, it allows a flexible and dynamic allocation of the groups, since all nodes
continuously update their information about their group start and end times when
receiving a beacon frame, at the beginning of each superframe.

Chapter 5 – On a Hidden-Node Avoidance Mechanism

80

5.4 Experimental Evaluation

5.4.1 Implementation approach
We have implemented the H-NAMe mechanism in nesC/TinyOS [43], over the Open-
ZB implementation [62] of the IEEE 802.15.4/ZigBee protocols, to demonstrate its
feasibility and efficiency using commercial-off-the-shelf (COTS) technologies.

For that purpose, we carried out a thorough experimental analysis to understand the
impact of the H-NAMe mechanism on the network performance, namely in terms of
network throughput (S) and probability of successful transmissions (Ps), for different
offered loads (G), in one cluster with a star-based topology. Both metrics have been also
used to evaluate the performance of the Slotted CSMA/CA MAC protocol in Chapter 4.
The network throughput (S) represents the fraction of traffic correctly received
normalized to the overall capacity of the network (250 kbps). The success probability
(Ps) reflects the degree of reliability achieved by the network for successful
transmissions. This metric is computed as the throughput S divided by G, representing
the amount of traffic sent from the application layer to the MAC sub-layer, also
normalized to the overall network capacity.

To have a clearer idea on the impact of the hidden-node phenomenon independently
from other parameters, we have chosen a superframe order sufficiently high (SO = 8) to
avoid the collisions related to the CCA deference problem encountered for low SO, in
the slotted CSMA-CA mechanism, as presented in [63] and in Chapter 4 of this Thesis.
The CCA deference problem occurs when it is not possible for a frame to be transmitted
in the remaining space of the superframe and its transmission must be deferred to the
next one. For low SO and due to the lower superframe duration, it is more probable that
this deference occurs (in more nodes), resulting in multiple collisions at the beginning of
the next superframe. The reason is that, after the deference, the slotted CSMA-CA
protocol does not perform another backoff procedure (only two CCAs).

5.4.2 Test-bed scenario
The experimental test-bed consisted of 18 MICAz motes [25] (featuring an Atmel
ATmega128L 8-bit microcontroller with 128 kB of in-system programmable memory)
scattered in three groups hidden from each other, a ZC and a protocol analyzer Chipcon
CC2420 [37], capturing the traffic for processing and analysis (Figure 45).

The protocol analyzer generates a log file containing all the received packets and the
corresponding timestamps, enabling to retrieve all the necessary data embedded in the
packets payload, using a parser application we developed, presented in Chapter 4.

The 18 nodes have been programmed to generate traffic at the application layer with
preset inter-arrival times. A similar approach has previously been used in Chapter 4, for
evaluating the performance of the CSMA-CA protocol. The three node groups were
placed at ground level near walls, in order to reinforce the hidden-node effect (Figure
45). To ensure that nodes in different groups were in fact hidden, a simple test was
carried out.

Chapter 5 – On a Hidden-Node Avoidance Mechanism

81

Figure 45 - Experimental testbed

A MICAz mote was programmed to continuously perform the clear channel
assessment procedure, toggling a led when energy was detected in the channel. By
placing this mote at different spots while a group of nodes was transmitting, we were
able to identify an area to place a new node group so that they would be hidden from the
other groups. This procedure was repeated for each group, in a way that nodes were
divided evenly by the 3 groups (6 nodes/group).

5.4.3 Experimental results
Figure 46 presents the GAP created by the H-NAMe mechanism.

Figure 46 - Groups allocation in the superframe

Each node group was assigned with four time slots for transmission, which represents
a theoretical duration of 983.04 ms per group (SO = 8). This allocation was made
according to the principle of equal group access duration for an equal number of nodes
per group.

5.4.4 The node group-join procedure

Figure 47 illustrates a packet capture of a group join requested by a node. In this
example, a node with short address 0x0006 (see Figure 47) requested to join a group.
Notice the beacon payload featuring the GAP specification of the groups already formed
(labeled (1) in Figure 47).

Chapter 5 – On a Hidden-Node Avoidance Mechanism

82

The node initiated the process by sending a Group-join.request message to the ZC
(label (2)) and receiving an acknowledgement. Then, all the other nodes in its
transmission range replied with a Neighbor.notify message (label (3)). When the
requesting node receives these messages, it knows that it shares a bi-directional link with
its neighbors. As soon as the timer for receiving Neighbor.notify messages expires, the
requesting node sends a Neighbor.report message to the ZC identifying its neighbors
(label (4)). The ZC runs the H-NAMe intra-cluster grouping algorithm to assign a group
to that node and sends a Group-join.confirm message, notifying the node of which group
to join (label (5)). The node, now assigned to Group 1, can transmit during the GAP
portion reserved for Group 1 (see Figure 46).

Figure 47 - Packet analyzer capture of a group join

5.4.5 H-NAMe performance evaluation
The performance evaluation of the H-NAMe mechanism has been carried out using BO
= SO = 8 (100% duty cycle), with a constant frame size of 904 bits. Several runs were

(1)

(5)

(2)

(3)

(4)

performed (one for each packet inter
at different offered loads (

Figure 48 presents the throughput (
three experimental scenarios: a network with hidden
mechanism (triangle markers curve); the previous netw
mechanism (circle markers curve) and a network without hidden
curve). The depicted average values for the throughput and probability of success were
computed with a 95% confidence interval for a sample size of 300
offered load. The respective variance is displayed at each sample point by a vertical bar
in black. From these results, we can observe that even at low offered loads H
leads to a considerable performance improvement. For instance, fo
of 30%, the success probability (
H-NAMe.

Figure

Chapter 5 – On a Hidden-Node Avoidance Mechanism

83

performed (one for each packet inter-arrival time), to evaluate the network performance
at different offered loads (G).

presents the throughput (S) and the success probability (Ps) obtained from
three experimental scenarios: a network with hidden-nodes without using the H
mechanism (triangle markers curve); the previous network using the H
mechanism (circle markers curve) and a network without hidden-nodes (square markers
curve). The depicted average values for the throughput and probability of success were
computed with a 95% confidence interval for a sample size of 3000 packets at each
offered load. The respective variance is displayed at each sample point by a vertical bar
in black. From these results, we can observe that even at low offered loads H
leads to a considerable performance improvement. For instance, for an offered load (
of 30%, the success probability (Ps) using H-NAMe is roughly 50% greater than without

Figure 48 - Experimental performance results

Node Avoidance Mechanism

arrival time), to evaluate the network performance

) obtained from
nodes without using the H-NAMe

ork using the H-NAMe
nodes (square markers

curve). The depicted average values for the throughput and probability of success were
0 packets at each

offered load. The respective variance is displayed at each sample point by a vertical bar
in black. From these results, we can observe that even at low offered loads H-NAMe

r an offered load (G)
NAMe is roughly 50% greater than without

Chapter 5 – On a Hidden-Node Avoidance Mechanism

84

Considering higher loads, it is clear that the H-NAMe doubled the throughput of the
conventional network with hidden-nodes. At 90% of offered load (G), the throughput of
the network using H-NAMe reached 67% and is increasing, while without using H-
NAMe a saturation throughput of 32% is achieved, representing an improvement of
more than 100%.

Moreover, it is possible to observe that for high offered loads, the H-NAMe
mechanism has actually up to 5% better throughput performance than that of a network
without hidden-nodes. This results from the lower probability of collisions with H-
NAMe since at most 6 nodes (one group) contend for the medium at a given time (GAP)
instead of 18 nodes in the network without H-NAMe intra-cluster grouping.

In this experimental scenario, there were no packets retransmitted (due to collisions).
However, if we consider one retransmission for each lost packet, the increase in the
number of transmissions would be significant in the case of the network without H-
NAMe, thus leading to a much higher energy loss, even at low offered loads. Notice that
for G = 30%, Ps is around 50% when H-NAMe is not used, meaning that half of the
packets transmitted did not reach their destination.

In conclusion, it can be noticed that the H-NAMe mechanism presents a significant
improvement of the network performance in terms of throughput and success
probability, at the small cost of some additional overhead to setup the different groups in
the networks.

5.5 Concluding remarks
In this chapter, we have described a solution to a real fundamental problem in Wireless
Sensor Networks (WSNs) that use contention-based medium access control (MAC) – the
hidden-node problem.

We have proposed a simple yet very effective mechanism – H-NAMe – that
eliminates hidden-node collisions in synchronized multiple cluster WSNs, leading to
improved network throughput, energy-efficiency and message transfer delays. H-NAMe
follows a proactive approach (avoids hidden-node collisions before occurring) for
achieving interference-free node and cluster groups.

We have also showed how H-NAMe can easily be applied to the IEEE
802.15.4/ZigBee protocols, which are prominent candidates for WSN applications.
Finally, we have implemented, tested, validated and demonstrated the feasibility and
effectiveness of the H-NAMe mechanism in a real scenario, reaching a network
performance improvement at the order of 100%.

Chapter 6
Real-Time Communications over Cluster-Tree

Wireless Sensor Networks

Modelling the fundamental performance limits of Wireless Sensor
Networks (WSNs) is of paramount importance to understand the
behaviour of WSN under worst-case conditions and to make the
appropriate design choices. This chapter focuses on the experimental
test and validation of a methodology for modelling cluster-tree WSNs
where the sink can be static or mobile. Worst-case end-to-end delays,
buffering and bandwidth requirements across any source-destination
path in the network are compared to the experimental (maximum,
average) results.

6.1 Introduction
Wireless Sensor Networks (WSNs) emerge as enabling infrastructures for large-scale
distributed embedded systems. Timeliness is an important requirement to be fulfilled in
these systems. However, issues such as large scale and communication, computing and
energy limitations pose important difficulties in guaranteeing a correct behaviour of
these systems.

Evaluating the performance limits of WSNs is therefore a crucial task, particularly
when the network is expected to operate under worst-case conditions [80], [81]. For
achieving real-time communications over sensor networks, it is mandatory to rely on
deterministic routing and MAC (Medium Access Control) protocols. Usually, these
networks use hierarchical logical topologies such as cluster-tree or hexagonal (e.g. [82],
[83]). Issues such as the use of contention-free MAC protocols (e.g. time division or
token passing) and the possibility of performing end-to-end resource reservation contrast
with what can be achieved in mesh-like topologies, where contention-based MACs and
probabilistic routing protocols are used.

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

86

In a previous work [79], the authors have provided a methodology and closed-form
expressions to dimension the network resources in a cluster-tree WSN with a static sink.
The sink – a central point that collects all sensory data – was assumed to be statically
attached to the root. That work aimed at evaluating the worst-case network performance
assuming a cluster-tree topology of balanced height and load. This symmetry property
was explored to derive per-hop and end-to-end resource requirements in addition to the
worst-case delays of upstream flows (i.e. from child nodes to the root).

However, while the static sink behaviour is adequate for root-centric WSN
applications (e.g. a surveillance system delivering alarms to a central station), other
applications may impose or benefit from collecting data at different network locations
(e.g. a doctor with a hand-held computer collecting patients’ status).

This chapter presents the experimental validation of a theoretical model that permit
the worst-case dimensioning and analysis of cluster-tree WSNs, based in Network
Calculus, by comparing worst-case results (buffer requirements and message end-to-end
delays) with the maximum and average values measured through an experimental
test-bed based on real COTS technologies.

6.2 Background on Network Calculus
Network Calculus [84] is a mathematical methodology based on min-plus algebra that
applies to the deterministic analysis of queuing/flows in the networks. This section
briefly introduces the aspects that are most significant to this work. For additional details
please refer to [84].

A basic system model S in Network Calculus consists of a buffered FIFO node with
the corresponding transmission link (Figure 49).

Figure 49 -The basic system model of Network Calcul us

For a given data flow, the input function R(t) is a cumulative number of bits that have
arrived to system S in the time interval (0, t). The output function R*(t) is the number of
bits that have left S in the same interval (0, t). An arrival curve α (t) upper bounds the
input function of a system S such that for ∀s, 0 ≤ s ≤ t, R(t) - R(s) ≤ α (t - s). A service
curve β (t) represents a lower bound on the transmitted cumulated flow, thus for ∀t there
exists t0 ≤ t such that R*(t) - R*(t0) ≥ β (t -t0). The knowledge of the arrival and service
curves enables us to determine performance bounds, namely the delay bound Dmax given
by the maximum horizontal distance between α (t) and β (t), which represents the
worst-case delay of the message traversing system S, and the backlog bound Qmax given
by the maximum vertical distance between α (t) and β (t), which represents the
minimum buffer size requires inside S. These concepts are illustrated in Figure 50.

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

87

Figure 50 - Example of input R(t) and output R*(t) functions constrained by (b, r)
arrival curve α(t) and rate-latency service curve β(t), respectively.

So far, we have handled a system S as a single buffered node. However, system S
might be also a sequence of nodes or even a complete network. If so, the concatenation
theorem enables to investigate systems in sequence as a single system. This theorem is
described in more detail in [16].

The accuracy of the worst-case bounds depends on how tightly the selected arrival
and service curves follow the real network behaviour. Different types of arrival and
service curves have been proposed in Network Calculus . However, the (b, r) arrival
curve and rate-latency service curve are the most used in such network models. The (b,
r) arrival curve is defined as α (t) = b + r·t for ∀t > 0, where b is called burst tolerance,
which is the maximum number of bits that can arrive simultaneously at a given time to
the system S and r is the average data rate. The rate-latency service curve is defined as
βR,T (t) = R·(t-T)+, where R ≥ r is the guaranteed link bandwidth, T is the maximum
latency of the service, and (x)+ = max(0, x). These curves lead to a fair trade-off between
computing complexity and approximation accuracy of the real system behaviour, as it
will be seen throughout the rest of the paper.

Hereafter, we consider a data flow constrained by the (b, r) arrival curve α (t) and
traversing system S with a rate-latency service curve βR,T (t). Then, the guaranteed
performance bounds Dmax and Qmax (see Figure 50 for additional intuition) are easily
computed as:

���� = �
� + 	

��� = � + � ∙ 	 (6.1)

6.3 System Model
This section defines the cluster-tree topology and data flow models that will be
considered in the analysis. It also elaborates on the worst-case cluster scheduling; that is,
the time sequence of clusters’ active periods leading to the worst-case end-to-end delay
for a message to be routed to the sink.

arriv
al curve

α(t)
= b+rt

α*(t)
 = (b

+rT)+rt

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

88

6.3.1 Cluster-tree topology model
Cluster-tree WSNs feature a tree-based logical topology, where nodes are organized in
different groups, called clusters. Each node is connected with one node at lower depth,
called parent node, and can be connected with multiple nodes at upper depth, called
child nodes.

The cluster-tree topology contains two main types of nodes. First, the nodes that can
associate with previously associated nodes and can participate in the multi-hop routing
are referred to as routers (Rij, i.e router j at depth i). Second, the leaf nodes that do not
allow association of other nodes and do not participate in routing are referred to as
end-nodes (N). The router that has no parent is called root (it might hold special
functions such as identification, formation and control of the entire topology). Routers
and end-nodes can both have sensing capabilities. Therefore they are generally referred
to as sensor nodes. Each router forms its cluster and is referred to as cluster-head of this
cluster.

In this work we aim at specifying the worst-case cluster-tree topology, i.e. the
network topology configuration that leads to the worst-case performance. This means
that a dynamically changing cluster-tree WSN can assume different configurations, but it
can never exceed the worst-case topology, in terms of maximum depth and number of
child routers/end-nodes. Thus, the worst-case cluster-tree topology is graphically
represented by a rooted balanced directed tree [85] defined by the following three
parameters:

− : Height of the tree, i.e. the maximum number of logical hops from the
deepest router to the root. A tree with only a root has a height of zero.

− ����_������� : Maximum number of end-nodes that can be associated to a router.
− ���������� : Maximum number of child routers that can be associated to a parent

router.

The depth of a node is defined as the number of logical hops from that node to the
root. The root is at depth zero, and the maximum depth of an end-node is H+1.

Note that the sink is a special type of node that gathers the sensory data from all
sensor nodes inside the network. Unlike previous work, we relax the assumption that the
sink is only associated with the root and consider the sink to be an autonomous and
topology-independent mobile node. The mobile behaviour means that a sink moves
arbitrarily within a static cluster-tree WSN and can be associated with any router within
communication range. The router, to which the sink is in a given moment associated, is
referred to as sink router. There can be more than one mobile sink in a WSN, but we
assume that only one is active (i.e. gathers the sensory data) at a given time. We specify
another parameter, ����� ∈ 0, �#, to represent the depth at a given moment of the sink
router in a cluster-tree topology. Note that if the sink is associated with the root, i.e.
����� = 0, the network contains only upstream flows. This case has already been
analysed in [79]. In this work, we analyze the case where ����� > 0.

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

89

Figure 51 - The cluster-tree topology and data flow models

Our terminology and conventions are as illustrated in Figure 51, corresponding to a
configuration where � = 2, '(�)_�*)(+,- = 3, '/*01(/+,- = 2, and ����� = 2. Note that a
cluster-tree WSN may contain additional nodes per router than those defined by '/*01(/+,-
and '(�)_�*)(+,- parameters. However, these additional nodes cannot be granted guaranteed
resources.

6.3.2 Data Flow Model
In this work, we assume that all sensory data is exclusively sent to the sink. All sensor
nodes are assumed to sense and transmit data upper bounded by the arrival curve
2)�1� 3# = �)�1� + �)�1� ∙ 3. In case of different data flows, 2)�1� 3# is considered to
represent the upper bound of the highest flow in a network. This may introduce some
pessimism to the analysis if the variance between data flows is significant.

Each end-node is granted a service guarantee from its parent router corresponding to
the rate-latency service curve 4)�1� 3# = �)�1� ∙ 3 −)�1�#6.

The output arrival curve 2)�1�∗ 3#, which upper bounds the outgoing data flow from
any end-node is characterized as follows:

2)�1�∗ 3# = 2)�1� 3# + �)�1� ∙)�1� (6.2)

The computation is showed in [16]. On the other hand, the amount of bandwidth
allocated by each router depends on the cumulative amount of data at its inputs, which
increases towards the sink. Thus, the total input function R of each router depends on the
depth, and consists of the sum of the output functions R* of its end-nodes and child
routers. Additionally, the router itself can be equipped with sensing capability producing

β
1
U

α
2
U

α
1U

β
0U

β 0
D

α 0
D

β d
a
ta
α d
a
ta

β
1
D

α
1
D

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

90

a traffic bounded by 2)�1� 3#. Thus, the arrival curve constraining the total input function
R of a router at general depth i is expressed as:

28� = 2)�1� + '(�)_�*)(+,- ∙ 2)�1�∗ + 9 2/*01(/ �6:,;#∗
<=>?@A=BCD

;E:
 (6.3)

The outgoing flow of a router at depth i is upper bounded by the output arrival curve
as follows:

2�∗ = 28�⨀4�G: (6.4)

Hence, the data flow analysis consists in the computation of the arrival curves 28� and
2�∗, using iteratively Eqs. (6.3) and (6.4) from the deepest routers until reaching the sink.
After that, the resource requirements of each router, in terms of buffer requirement Qi
and bandwidth requirement Ri, and the worst-case end-to-end delay bound of WSN are
computed.

In cluster-tree WSNs where the sink can be associated with a router other than the
root, data flows may then be redirected in the downstream directions. Data flows over
upstream links (called upstream flows) have already been analysed in [79]. Data flows
over downstream links (called downstream flows), where data is sent from a parent
router to its child router, are analysed in this work. In what follows, the upstream and
downstream flows are marked by the subscripts U and D, respectively (e.g. 2�H∗ , 2�I∗). We
also assume two types of service curves (i.e. 4�H for upstream flows and 4�I downstream
flows) provided by each parent router at depth i to its child routers at depth i+1, as
presented in [16].

To ensure the symmetry properties of the worst-case cluster-tree topology assumed in
our methodology, the same downstream or upstream service curves must be guaranteed
to all downstream or upstream flows at a given depth, respectively.

The detailed data flow analysis (input and output, upstream and downstream), is
presented in [16], along with the worst-case network dimensioning. These
methodologies were then applied to the specific case of IEEE 802.15.4/ZigBee.

6.3.3 Time Division Cluster Scheduling
In general, the radio channel is a shared communication medium where more than one
node can transmit at the same time. In cluster-tree WSNs, messages are forwarded from
cluster to cluster until reaching the sink. The time period of each cluster is periodically
divided into an active period (AP), during which the cluster-head enables data
transmissions inside its cluster, and a subsequent inactive period, during which all
cluster nodes may enter low-power mode to save energy resources. To avoid collisions
between multiple clusters, it is mandatory to schedule active periods of different clusters
in an ordered sequence, called Time Division Cluster Schedule (TDCS). In other words,
TDCS is equivalent to a permutation of active periods of all clusters in a WSN such that
no inter-cluster interference occurs. In case of one collision domain (i.e. all nodes hear
each other), the TDCS must be non-overlapping, i.e. only one cluster can be active at
any time. On the contrary, in a network with multiple collision domains, the clusters
from different non-overlapping collision domains may be active at the same time.
The number of feasible TDCSs in a network with n routers inside one collision domain
is equal to the number of permutations given by n factorial (n!). Note that for each data

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

91

flow originated in a given node, there is a corresponding best-case/worst-case TDCS that
minimizes/maximizes the end-to-end delay of that flow, respectively. Thus, it is
impossible to determine a general best-case or worst-case TDCS meeting the
requirements of all data flows. Our methodology based on the symmetric properties of
cluster-tree topology, for dimensioning the network resources of a WSN for the
worst-case TDCS, is presented in more detail in [78].

6.4 IEEE 802.15.4/ZigBee Cluster-Tree WSN Setup
For our experimental scenario, we consider a simple cluster-tree WSN corresponding to
the configuration where � = 2, '(�)_�*)(+,- = 1, '/*01(/+,- = 2. For the sake of simplicity,
only end-nodes are equipped with sensing capability (i.e. S = 0) and generate data flows
bounded by the arrival curve 2)�1� 3#. We assume a minimum possible value of SO (e.g.
SO = 4, imposed by some technological limitation of our experimental platforms, namely
due to the non-preemptive behaviour of the TinyOS [43] operating system. According to
[16] the total number of routers is equal to 7. Hence, BO must be set such that at least 7
SDs with SO = 4 can fit inside the BI without overlapping as presented in [16].

As a result for SO = 4, the minimum BO is equal to 7, such that a maximum of
27/24 = 8 SDs can fit in one BI. The maximum duty cycle of each cluster is then equal to
(1/8) = 12.5 %. Note that to maximize the lifetime of a WSN, the lowest duty cycles
must be chosen. On the other hand, low duty cycles enlarge end-to-end delays. Hence,
long lifetime is in contrast to the fast timing response of a WSN, so a trade-off must be
found.

According to [24], the minimum CAP is equal to 7.04 ms, assuming the 2.4 GHz
ISM band, which corresponds to 1 time slot with SO = 4. The remaining slots can be
allocated for GTSs. Hence, the maximum CFP length is equal to LCFP = 15 time slots.
With this constraint, a router cannot reserve more than LCFP time slots for 7 GTSs
maximum, i.e. for its '(�)_�*)(+,- end-nodes and '/*01(/+,- child routers. Assuming that each
end-node requires allocation of a GTS with ')�1�KL time slots (i.e. rdata ≤ ')�1�KL ·RTS) from
its parent router. Then, each child router can allocate a GTS with the maximum number
of time slots equal to:

MNOPQR − ')�1�KL ∙ '(�)_�*)(+,- S/'/*01(/+,- U (6.5)

The computation of the data arrival rate not to exceed the maximum bandwidth a

parent router can reserve, in done in [16].

6.5 Experimental Evaluation
In this section, we compare the analytical results based on Network Calculus that were
proposed in this work, with the experimental results obtained through the use of IEEE
802.15.4/ZigBee technologies. The analytical results are computed using a MATLAB
model [86], and the experimental results are obtained using a real test-bed based on the
TelosB motes [26].

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

92

6.5.1 Experimental Setup
The experimental test-bed (illustrated in Figure 52) consists of 14 TelosB motes running
the TinyOS 1.x operating system with our open source implementation of the IEEE
802.15.4/ZigBee protocol stack [18]. The TelosB is a battery powered wireless module
with integrated sensors, IEEE 802.15.4 compliant radio, antenna, 16-bit RISC
microcontroller, and programming capability via USB. For debugging purposes, we have
used the Chipcon CC2420 packet sniffer [37] that provides a raw list of the transmitted
packets, and the Daintree Sensor Network Analyzer (SNA) [38] that provides additional
functionalities, such as the graphical topology of the network. Note that, in practice, the
experimental deployment can span over a wide region where each end-node or child
router must be in radio range of its parent router.

Figure 52 - The test-bed deployment for Hsink =1

The analytical model [86] was developed in MATLAB, and can run in Command
Line Interface (CLI) mode or Graphical User Interface (GUI) mode. On the left hand
side of the GUI in Figure 53, the network and sensory data flow parameters are entered.
After the computation, the results and optionally several charts are shown on the right
hand side. The values in Figure 53 correspond to the under mentioned network setting
and the results from Section 6.5.2, namely the worst-case end-to-end delays for Hsink = 0.

We configured the application running on the sensor nodes to generate 3 bytes at the
data payload. Hence, the maximum size of the MAC frame is equal to MPDUmax = 192
bits (i.e. MAC Header = 88 bits, FCS = 16 bits, Network Header = 64 bits, and Data
Payload = 24 bits). Note that all devices in WSN have unique 16 bit short addresses
allocated by the PAN Coordinator during the association process.

TinyOS 1.x flushes the reception buffer of the radio transceiver after processing the
first arriving frame. Thus, the frames that arrive during the processing time of the first
frame are discarded. This problem has been already reported and fixed in TinyOS 2.x.
Since our implementation of IEEE 802.15.4/ZigBee protocol stack was built over
TinyOS 1.x, we overcame the aforementioned problem by setting the inter-frame
spacing (IFS) time (i.e. time between two consecutive frames) such that no frame arrives
during the frame processing times. The experimental value of IFS equal to 3.07 ms was
measured.

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

93

Figure 53 - The GUI of the MATLAB analytical model

As presented in [16] the bandwidth guaranteed by one time slot for SO = 4 is equal to
3.125 kbps with 100% duty cycle. Hence, in our experimental scenario with a 12.5 %
duty cycle (i.e. BO = BOmin = 7), the guaranteed bandwidth of one time slot is equal to
RTS = 3.125 · 0.125 = 0.3906 kbps. Let us assume ')�1�KL = 1. Then, as described in [16],
we obtain the maximum arrival rates of the sensory data flow as follows

− �)�1�+,- = 456 bps for Hsink = 2
− �)�1�+,- = 684 bps for Hsink = 1
− �)�1�+,- = 911 bps for Hsink = 0 (root)

As a result of rdata ≤ min(�)�1�+,-) and rdata ≤ RTS, we consider an average arrival rate

equal to rdata = 390 bps, which corresponds to 4 frames (192 bits each) generated during
one Beacon Interval (BI = 1.96608 sec). We assume that the burst tolerance is equal to
bdata = 576 bits, which corresponds to 3 frames generated at once. Hence, each sensory
data flow is bounded by arrival curve αdata(t) = 576 + 390·t. Note that Network Calculus
based analytical model is bit oriented, while the experimental test-bed is frame oriented.
The frames can be generated as constant bitrate (CBR) or variable bitrate (VBR) traffic
upper bounded by the arrival curve αdata(t) (Figure 54).

Finally, let us summarize the complete network setting
− '/*01(/+,- = 2
− '(�)G�*)(+,- = 1
− H = 2
− SO = 4 (SD = 245.76 ms)
− BO = 7 (BI = 1966.08 ms)
− Duty Cycle = 12.5 %

− MPDUmax = 192 bits
− rdata = 390 bits
− bdata = 576 bits
− IFS = 3.07 ms
− LCFP = 15
− S = 0

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

94

Figure 54 - The sensory traffic generation

We assume the worst-case TDCS of a flow along the longest routing path from router
R24 to the sink (Figure 51) given by the following sequence of superframe durations:
SD11, SD01, SD12, SD24, SD23, SD21, SD22. Note that we consider only unacknowledged
transmissions and all nodes inside one collision domain.

6.5.2 Experimental vs. Theoretical Results

Buffer Requirements
Figure 55 presents the theoretical worst-case buffer requirement of the routers at given
depth as a function of the sink position. It can be observe that end-nodes have the
smallest buffer requirement as they are the leaves of the tree, and that the buffer
requirement grows in direction of the sink router. Since the sink can be associate to any
router in a WSN and in order to avoid buffer overflow, all routers at depth i should
allocate a buffer of capacity equal at least to the maximum buffer requirement at given
depth i (e.g. all router at depth 0 allocate a buffer of capacity equal to 15.995 kbits),
which effectively demonstrates how these analytical results can be used by a system
designer.

Figure 56 shows the theoretical worst-case buffer requirements compared with the
maximum values obtained through real experimentation, for Hsink = 2.

First, the theoretical buffer requirements are divided into three portions according
their origin, as we have shown in [16]. Observe that the cumulative effect of the burst is
more important than the cumulative effect of the service latencies. The effect of the
service latencies may be more important for other setting of bdata and rdata. So, the
different setting of the sensory arrival curve affects the buffer requirements. The minor
effect of the upstream service latency at depth 0 is given by the priority rules (refer to
[16]), such that the data arriving during the transmit GTS (i.e. upstream flow) are stored
in the root until the receive GTS (i.e. downstream flow), at the end of the same SD, is
active and data is dispatched.

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

95

Figure 55 - The worst-case buffer requirements per router as a function of the depth

and sink position

The next observation confirms that the theoretical values upper bound the
experimental values. The pessimism of the theoretical bounds is justified by the fact that
the Network Calculus analytical model is based on a continuous approach (arrival and
service curves are continuous) in contrast to the real stepwise behaviour of flows and
services in the test-bed.

Figure 56 - The theoretical vs. experimental buffer requirements

In practice, the data is actually transmitted only during its GTS, while in the
analytical model we consider a continuous data flow during the whole BI, since it
represents the average rate and not the instantaneous rate. Figure 57 illustrates the

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

96

problem and shows the arrival and service curves of a data flow sent by an end-node to
its parent router. The burst of the outgoing data flow �)�1�∗ is equal to
���KV , in case of
the analytical model, or
���W-R , in the experimental case. Due to the cumulative flow
effect, the differences between theoretical (
���KV) and experimental (
���W-R) values of
buffer requirement grow with depth. The rate-latency service curve used in our analysis
results from a trade-off between computing complexity and pessimism.

Figure 57 - Theoretical vs. experimental data traff ic

The numerical values of theoretical worst-case as well as experimental maximum
buffer requirements are summarized in Table 5. In Table 5 and 6, U means an upstream
router at depth i or an upstream link to a router at depth i, and D means a downstream
router or a downstream link from a router at depth i.

Table 5 - Delay bounds: theoretical vs. experimenta l results

 depth
theoretical results

(worst-case values)
experimental results
(maximum values)

Ri [kbps] 'X
	Y Qi [kbits] Qi [kbits]

Hsink = 0
(root)

0 U 1.7 3 15.995 5.376
1 U 0.39 1 7.329 2.304
2 U — — 2.008 0.768

Hsink = 1

0
D 1.56 4 8.667 3.072
U 1.17 3 — —

1
D — — 14.02 5.376
U 0.39 1 7.257 2.304

2 U — — 2.008 0.768

Hsink = 2

0
D 1.56 4 8.667 3.072
U 1.17 3 — —

1
D 2.34 6 15.966 4.608
U 0.39 1 7.257 2.304

2
D — — 17.3 5.376
U — — 2.008 0.768

end-node 0.39 1 1.337 1.344

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

97

Delay Bounds
In Figure 58, we compare the worst-case, maximum and average values of per-hop
delays bound in each router, and the end-to-end delay bounds for Hsink = 2. A first
observation confirms that theoretical values upper bound the experimental values. The
difference in theoretical worst case (����KV) and experimental maximum (����W-R) delays is
given by the aforementioned continuous and stepwise behaviors of the analytical model
and test-bed, respectively. The experimental delays comprise mainly the service
latencies (Figure 58) decreasing in the direction of the sink (Figure 51). Hence, the
maximum per-hop delays also decrease in the direction of the sink as you can observe in
Figure 58. The low downstream delay at depth 0 results from priority rule. The end-to-
end delays bounds are quite high, even though the bdata and rdata are low. This is mainly
due to high value of SO = 4 (i.e. BI = 1.966 sec). Hence, the end-to-end delay bounds
can be reduced using lower values of SO or higher bandwidth guarantees, using lower
IFS, for example.

Observe also that the worst-case end-to-end delay obtained by the per-flow approach
offers less pessimism than the delay from the per-hop approach.

Table 6 presents the worst-case, maximum and average numerical values of per-hop
and per-flow delay bounds, and the end-to-end delays for given sink position.

Figure 58 - Theoretical vs Experimental delay bound s

Note that the average values were computed from the set of 15 measurements,
involving 1155 frames each.

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

98

Table 6 – Delay bounds: theoretical vs. experimenta l results

 depth
theoretical results

(worst-case values)
experimental results

maximum average
Di [sec] Di [sec] Di [sec]

Hsink = 0
(root)

1 U 6.257 1.764 1.308
2 U 5.143 1.812 1.602

De2e 14.82/9.69 7.154 4.952

Hsink = 1

0 D 5.547 0.104 0.099
1 U 6.195 1.76 1.728
2 U 5.143 1.809 1.602

De2e 20.31/10.53 7.251 5.471

Hsink = 2

0 D 5.547 0.104 0.099

1
D 6.814 1.812 1.321
U 6.195 1.766 1.728

2 D 5.143 1.814 1.135
De2e 27.13/13.65 9.074 6.325

end-node (Ddata) 3.425 3.578 2.042

The determination of the optimal service curve, leading to the lowest worst-case
delay, will be addressed in future work.

Lifetime of a WSN
We have already mentioned previously that to maximize the lifetime of a WSN, low
duty cycles are required. On the other hand, low duty cycles enlarge timing response of a
WSN. Our assumptions are confirmed in Figure 59 which shows the theoretical worst-
case and experimental maximum end-to-end delays as a function of duty cycle for Hsink =
0. The value of SO is set to 4 and the decreasing duty cycles are given by increasing BO.
Note that the minimum BO is equal to 7 for SO = 4. To avoid the lack of bandwidth for
lower duty cycles, the average arrival rate must be reduce to rdata = 0.190 kbps
(�)�1�+,- = 0.195 kbps for duty cycle equal to 3.125%). The other network settings are the
same as in previous experiments. The theoretical worst-case end-to-end delays are
obtained by per-hop and per-flow approaches. The observation again confirms that the
theoretical values upper bound the experimental values, and the worst-case delay
obtained by the per-flow approach offers less pessimism than the delay from the per-hop
approach.

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

99

Figure 59 - The theoretical worst-case and experime ntal maximum end-to-end delays

as a function of duty cycle for Hsink = 0 (lifetime of a WSN)

6.6 Concluding remarks
In this work, we tackled the worst-case dimensioning of cluster-tree wireless sensor
networks (WSN) assuming that the data sink can be mobile, i.e. can be associated to any
router in the sensor network. We developed a 7 clusters test-bed based on Commercial-
Off-The-Shelf technologies, namely TelosB motes running our open-ZB protocol stack
over TinyOS. This test-bed enabled us to assess the pessimism of our worst-case
theoretical results (buffer requirements and message end-to-end delays), by comparing
these to the maximum and average values measured in the experiments.

Importantly, we showed how it is possible to instantiate our generic methodology in
IEEE 802.15.4/ZigBee, which are promising technologies for WSN applications.

Chapter 6 – Real-Time Communications over
Cluster-Tree Wireless Sensor Networks

100

Chapter 7
ERIKA and Open-ZB: a Toolset for Real-Time

Wireless Networked Applications

IEEE 802.15.4/ZigBee and TinyOS have been playing an important role
in leveraging a new generation of large-scale networked embedded
systems. However, based on previous experience on the implementation
and use of the IEEE 802.15.4/ZigBee protocols over TinyOS, several
problems (producing loss of synchronization and even network crashes)
emerge due to some limitations of TinyOS, namely related to the lack of
task pre-emption and prioritization. Therefore, we implemented the
IEEE 802.15.4 protocol over ERIKA, a real-time operating system for
resource-constrained embedded systems. This chapter presents the most
important aspects of the software implementation and reports
comparative experimental results based on real hardware and software
platforms.

7.1 Introduction
IEEE 802.15.4 / ZigBee protocols provide timeliness guarantees when operating in
beacon-enabled mode. This mode offers the possibility of allocating/ deallocating time
slots in a Superframe, called Guaranteed Time Slots (GTSs), and therefore the possibility
of providing predictable minimum service guarantees. Having a minimum service
guarantee, it is possible to predict the worst-case timing performance of the network.
Open-ZB [19] is an open source implementation of the IEEE 802.15.4 / ZigBee suite of
protocols. It is however an implementation over TinyOS. The protocols are implemented
through a number of carefully designed processing tasks. The design tries to minimize
the impact of nonpreemption in delaying critical tasks such as the ones related to beacon
transmission and generation. It is however proved [21] that when clusters operate at very
high duty-cycles and beacon transmission frequencies, nodes may lose synchronization

Chapter 7 – ERIKA and Open-ZB: a Toolset for
Real-Time Wireless Networked Applications

102

and therefore get disconnected from the rest of the network. Moreover, if a node is not
properly synchronized, there is a possibility of collisions in the GTS slots (in case the
CAP overlaps the CFP).

Non-preemption and lack of task prioritization is therefore the major drawback of the
Open-ZB implementation of the ZigBee suite of protocols.

In order to overcome this problem, we propose, discuss and analyse an alternative
implementation of the Open-ZB protocol stack over the ERIKA real-time OS [44]. The
results hereby presented demonstrate that ERIKA enables reliable beacon
synchronization, even under high duty cycles, and leads therefore to improved network
performance when compared to implementations based on TinyOS. The main
contribution of this work is the actual implementation of the IEEE 802.15.4 /ZigBee
protocols over the ERIKA real-time operating system. It thus enables an open source
tool suite that overcomes the problems of synchronization that occur in the
implementation of the IEEE 802.15.4 over TinyOS.

7.2 Software Implementation

7.2.1 Architecture
The implementation of the IEEE 802.15.4 protocols over ERIKA is organized in a
layered architecture. In this design we build the networking stack by the use of
Operating System primitives, generic libraries and the hardware features provided by the
Micro-Controller Unit (MCU). Figure 60 illustrates the overall software architecture.

Figure 60 – Stack implementation layered architectu re

The HW layer abstracts the current selection of hardware components including the
Microchip dsPic33F MCU, CC2420 Chipcon transceiver, and the FLEX development
board (embedding LCD, LEDS, etc., see Chapter 3 concerning technologies). To ensure
a clean design, the hardware-driven facilities are separated from the rest of the
implementation. In the HW interrupts layer the ERIKA Interrupt Service Routines
(ISRs) are implemented to handle all hardware interrupts. Moreover, in the ieee802 15 4
layer all the hardware related attributes specific for implementing the IEEE 802.15.4
communication protocol were implemented separately. This layer contains the code to
initialize the hardware timers, to initialize the communication between CC2420
transceiver and MCU, and to handle timer and transceiver interrupts. The CC2420 driver

Chapter 7 – ERIKA and Open-ZB: a Toolset for
 Real-Time Wireless Networked Applications

103

is a component for sending commands to and exchanging data I/O with the transceiver.
This driver exports to Transceiver-HAL all the primitives standardized in IEEE 802.15.4
PHY. The Transceiver-HAL is a helper layer aware of the upper IEEE 802.15.4 MAC
and CC2420 driver, designed to extend the support to different hardware solutions. The
ERIKA layer is responsible for managing the system hardware resources and is
providing the typical OS services such as Task management, resource access control,
interrupt and timer management. Software timer abstractions are provided by means of
software counters and alarms.

Alarms are software abstractions for timers. These alarms are used in this context to
activate periodic tasks. ERIKA alarms, configured for communication purposes, can be
initialized with a desired rate, stopped and reset whenever required. The common lib is a
generic library providing some software utilities to the upper layers. More specifically,
this layer provides: basic data structures such as queues, circular queues, indexed
structures, etc used in memory buffer management; debugging helper, e.g. utilities for
printing data on the console using the serial communication with the MCU through the
UART port. The ieee802 15 4 Lib is the heart of the network stack. It includes the PHY
and MAC layers of IEEE 802.15.4 standard. This layer is concerned only with the
implementation details of the communication, and makes use of the timing services and
memory management services provided by underlying layers. The IEEE 802.15.4
physical layer (shown in Figure 61) is responsible for the implementation of the
following functionalities:

− Activation and deactivation of the radio transceiver;
− Channel frequency selection;
− Energy Detection(ED) within the current channel;
− Turnaround of the radio;
− Link quality indicator (LQI) for received packets;
− Clear Channel Assessment (CCA) for Carrier Sense
− Multiple Access Collision Avoidance (CSMA-CA).

Figure 61 - PHY Layer reference model

The Physical Data Service Access Point (PD-SAP) is responsible for receiving and
sending the data from and to the MAC layer. The Physical Layer Management Entity
SAP (PLME-SAP) includes the interfaces between the MAC and the PHY used for
exchanging management information.

Chapter 7 – ERIKA and Open-ZB: a Toolset for
Real-Time Wireless Networked Applications

104

Figure 62 - MAC layer reference model

The IEEE 802.15.4 MAC layer (shown in Figure 62) is responsible for the
implementation of the following functionalities:

− Generating network beacons if the device is a coordinator;
− Synchronizing to the beacons;
− Supporting PAN association and disassociation;
− Supporting device security;
− Employing the CSMA-CA mechanism for channel access;
− Handling and maintaining the GTS mechanism;
− Providing a reliable link between two peer MAC entities.

7.2.2 Implemented services
Currently we have implemented most of the basic mechanisms of Open-ZB over
ERIKA. We developed a fully functional, customized driver for the CC2420 transceiver.
Our libraries support the generation of the MAC superframe and provide the slotted
CSMA/CA access mechanisms. The protocol services have been mapped to tasks having
reserved a set of priorities for network-related use only. Regarding memory usage, buffer
queues have been statically allocated in the global scope to accommodate message
payloads (MPDU) used for send and receive. Concerning networking we enabled the
modules related to MAC & PHY services in the Open-ZB package. More precisely we
implemented Beacon transmission at every Beacon Order, Static Network formation (i.e.
without negotiation and with statically assigned MAC addresses), Coordinator/ End
device time synchronization using CSMA/CA slotted mode. Thus, we enable data
transmission and reception in unslotted and slotted mode including GTS allocation and
transmission. Since negotiation is not yet implemented, currently it is up to the
application programmer to actually define network addresses and to allocate GTS slots
for end devices.

7.2.3 Implementation details
To configure the network stack in ERIKA we use the OIL language: this includes the
creation of the tasks required by IEEE 802.15.4 protocol, their respective priorities, the
usage of ERIKA alarms and the choice of a scheduling policy. In Table 2 we list the
service tasks assigned together with their priorities, the periods and the associate alarms
used for their activation.

Chapter 7 – ERIKA and Open-ZB: a Toolset for
 Real-Time Wireless Networked Applications

105

Most of these tasks are periodic with rate dependent on the IEEE 802.15.4 protocol
specification, Beacon Order (BO) and Superframe Order (SO) settings. To generate
these precise timing values we make use of a 16 bit hardware timer provided by
dsPic33F processor. This timer has a minimum tick value of 0.025 µs when the
microcontroller is configured to work at 40 MHz operating frequency.

The hardware timer is set to have a granularity of 320 µs required by the backoff
interval specified in the IEEE802.15.4 standard. All the networking tasks depend on it
since their activation periods are integer multiples of 320 µs. Concerning memory, in our
design we make use of three memory buffers. These global memory locations are shared
by different modules and require mechanisms for mutual exclusion and synchronization:
ERIKA “resources” have been used for such a purpose (see Table 7).

Table 7 - Memory buffers and ERIKA resources set as guards

In the IEEE 802.15.4 framework, beacon transmissions are used to synchronize the
devices. Thus, in our implementation the alarms are re-aligned after the beacon has been
recognized and processed.

The algorithm works as follows (see Figure 63). At the firing of an event of Start of
Frame Delimiter SFD) from the radio, an ISR interrupt handler is executed. In the
handler code, a clock timer is activated tracking the time needed to recognize the packet
as a beacon. Next, at the firing of the FIFOP event (denoting that the RX buffer has been
filled), the ReadDispatcher (high priority) task is activated. After reading the first 3 bytes
of the packet (enough to know the packet type), if the packet is recognized as a beacon,
the task continues its execution (safe from eventual pre-emption) until all information
carried by the beacon are processed and the timer is stopped (the counter reads ∆T); if
the packet is not a beacon another task is in turn activated to process the data at a lower
priority. The information on ∆T are used to synchronize the alarms with the arrival of
the beacon (SFD), having taken note of the beacon reception and processing overhead.
In our experiments, ∆T has never exceeded 1.9 ms. This number is probably dominated
by the transceiver response time (i.e. the time needed to receive all bits of the beacon,
and transmit them over the SPI bus).

Figure 63 - Beacon processing in ERIKA

Chapter 7 – ERIKA and Open-ZB: a Toolset for
Real-Time Wireless Networked Applications

106

7.3 Experimental work

7.3.1 Data collection and analysis method
The implementation of the IEEE 802.15.4/ZigBee has been validated by using the
Chipcon CC2420 Packet Sniffer. The CC2420 Packet Sniffer for IEEE 802.15.4 v1.0
provides a raw list of the packets transmitted. Thanks to this hardware/software suite, it
is possible to collect detailed record of the packets transmitted over air by all WSN
devices and analyze them off-line.

7.3.2 Beacon Transmission Timing Coherence and Clock Drift calculation
As already mentioned in Section 3.1, to transmit the beacons, we use ERIKA alarms. In
order to measure the time coherence in beacon transmission we used the timestamping
support of the Chipcon testing suite. At Beacon Order (BO) of 6 we obtained the results
as shown in Figure 64.

Figure 64 - Beacon inter-arrival time at the sniffe r board

Analyzing the plot, and neglecting any spread in propagation time (of the order of a
few ns), we observe that ERIKA is about 50 µs late with respect to the nominal value.
This effect is proven in the following to be due to the clock drift accumulated at the
source device in one BI. Although displaced, the ERIKA alarm coherence is in the order
of 1 µs. We measured the Beacon Interval letting the BO vary from 0 to 8. The results
are shown in Table 11.

Chapter 7 – ERIKA and Open-ZB: a Toolset for
 Real-Time Wireless Networked Applications

107

Table 8 - Observed time divergence from nominal val ue

The observed trend as function of BO demonstrates that the effect is due to the clock
drift. From the value corresponding to BO = 8, we can even estimate the clock drift as:

This is true, assuming equal accuracy for the dsPic33F and the Chipcon Sniffer Board.

7.3.3 Contention Free Transmissions
We prepared an experimental setup consisting of 3 nodes: one PAN coordinator and 2
transmitting node devices.

Following the IEEE 802.15.4 standard, GTS allocation is performed by the PAN
coordinator, which in our setup allocates two GTSs (4 time slots wide each) to the other
nodes, as shown in Figure 65. Multiple frame transmission has been implemented in
device nodes spanning the total duration of the allocated bandwidth. Following the
standard, a set of 12 frames are injected into the network without contention by each
device at every superframe. In a set of runs, each composed by about 400 beacons at BO
= 4, the CC2420 packet sniffer detected on average 99% of the scheduled transmissions.
The few missed frames are due to frame error occurrences probably caused by
interference with IEEE 802.11 channels.

7.4 Comparative performance results
In this section, we compare the performance (throughput and packet delivery ratio) of
our hardware/software platform (ERIKA + Open-ZB) with respect to other popular ones,
namely:

− TinyOS 2.0 and BMAC on Telos-B;
− TinyOS 2.0 and Open-ZB on Telos-B.

Chapter 7 – ERIKA and Open-ZB: a Toolset for
Real-Time Wireless Networked Applications

108

Figure 65 - Guaranteed Time Slots allocated to Devi ce 1 and 2 to inject packets

without contention access

Our testbed consists of a multi-task firmware with the Constant Bandwidth Rate
(CBR) traffic generator scheduled together with the other tasks implementing the
network stack services. The payload (104 bytes), and the number of transmitted packets
(1000) are fixed. The inter-frame period (i.e. the inverse of the traffic rate) is a tunable
parameter. The number of delivered packets and the total elapsed time are extracted from
the Chipcon sniffer application.

7.4.1 Downsizing FLEX to Telos-B
Unfortunately, an implementation of ERIKA for the Telos-B board is not yet available.
The dsPic processor on the FLEX board normally runs at 40 MHz, whereas the Texas
Instrument MSP430 processor used on the Telos-B has a maximum processor frequency
of 8 MHz. To remove the bias in comparing these two platforms, we prescaled the dsPic
internal clock by a factor of 5, thus operating it at 8MHz. In addition, we set the SPI
frequency for MCU – radio I/O in both platforms to the same frequency of 1 MHz.
Finally, in both implementations, we allocated memory buffers of the same size for
packets.

Thus, apart from the instruction set architectures, the two platforms are equivalent.
For better comparison, we run the same experiments on the FLEX both at full speed and
at the pre-scaled frequency. As shown in Figure 66, the effect introduced by the CPU
speed is not negligible at low rate, up to about 200 Hz. However, above this threshold
the role played by the hardware is very limited with respect to software effectiveness, as
it will be shown in the next section.

Chapter 7 – ERIKA and Open-ZB: a Toolset for
 Real-Time Wireless Networked Applications

109

Figure 66 - Throughput using ERIKA+FLEX (Left) and Packet delivery ration using
ERIKA+FLEX (Right), at different microcontroller sp eeds

7.4.2 Comparing ERIKA with TinyOS
With a downsized FLEX board, the comparison between the ERIKA+Open-ZB on
FLEX and TinyOS on Telos-B (with BMAC and Open-ZB) is fair. We run several
experiments on the 2 platforms, each time increasing the rate of packets sent, and
measuring the effective throughput and packet delivered ratio. The results are shown in
Figure 67.

Figure 67 – Throughput using ERIKA+FLEX (left) and Packet delivery ratio using
ERIKA+FLEX

The ERIKA solution outscores the TinyOS-based ones at every CBR rate apart from

the first point (100 Hz). The saturation of the curve observed around 150 kbps is related
to the transceiver maximum rate since it is very much correlated with the drop in the

Chapter 7 – ERIKA and Open-ZB: a Toolset for
Real-Time Wireless Networked Applications

110

delivered ratio (i.e. probability of successful transmission). Moreover we found the
ERIKA + Open-ZB solution more convenient up to about 400 Hz.

7.5 Concluding remarks
The rising demand for using WSNs in industrial automation and new exciting
application domains as distributed video processing require support for
hardware/software platforms exhibiting real-time behaviour. However, popular and
widespread operating systems like TinyOS cannot support real-time behaviour in this
context. To overcome these limitations, we decided to implement a software suite
integrating the ERIKA OS real-time kernel with the Open-ZB network stack. In this
chapter we presented the architecture of our software and the internal implementation.

Although the work is not yet complete, most of the services are operational and a
complete set of tests have been presented in this chapter to validate our implementation.
The results are very encouraging. Our hardware/software platform can achieve very high
throughput and packet delivery ratio with respect to existing solutions based on TinyOS.
Moreover, we show a high timing coherence in the beacon transmission and high
reliability in packet delivery.

Given these concrete and promising results, we firmly believe that it is indeed
possible to provide support for real-time execution and network transmission in cheap
hardware platforms. Currently, we are completing the implementation of all the services
in Open-ZB, including bandwidth allocation strategies and support for application-level
QoS management and control. In the near future, we plan to use our platform to carry on
advanced research on distributed video processing in dense WSNs. It is also envisaged to
implement the core ZigBee Network Layer functionalities to support multi-hop
communications, namely Cluster-Tree network topologies.

Chapter 8
Hands-on Work over a Real Application

Scenario

This chapter presents a deployment of a Wireless Sensor Network in a
real application scenario. This scenario aims at demonstrating the
impact of the presence of hidden-nodes in a real target tracking
application. Some of the problems and challenges faced are discussed,
namely in what concerns technological limitations, as well as some
hands-on experience gained from this implementation.

8.1 Introduction
Target tracking applications are highly demanding in timeliness and therefore very
appealing to serve as platforms for testing and demonstrating the real-time operation of a
network. This premise lead to the development of a Search and Rescue application ([87],
[88]) for testing, validating and demonstrating the architecture and mechanisms of the
ART-WiSe research framework [11]. A first approach to this application was reported in
[12].

In this chapter we propose to assess and demonstrate the impact of the hidden-
terminal problem in a real WSN application. With this purpose a new application
scenario was built over the aforementioned Search and Rescue testbed application.

During the development of the application some challenges were faced. Most of them
were related to technological limitations in terms of hardware, timer handling and
operating system limitations. These problems are reported here, as well as some physical
layer aspects such as coexistence problems between IEEE 802.15.4 and IEEE 802.11
radio channels.

Chapter 8 – Hands-on Work over a Real Application Scenario

112

8.2 Snapshot of the ART-WiSe Search & Rescue testbed
application
The overall objective of the application is to detect, localize and rescue a target entity,
within a certain region covered by a WSN deployment. Mobile robots are currently
being used to act as target and rescuer/pursuer entities [87].

The target robot is supposed to be in distress (search&rescue context) or to be an
intruder (pursuit-evasion context). The target robot movement is remotely controlled by
an operator, using a joystick. A WSN node mounted on top sends periodic messages to
signal its presence, which are then relayed by the WSN to the Control Station with the
necessary data to trigger localization. The Control Station then computes the target robot
location, displays it in a virtual scenario and informs the rescuer robot that will
immediately initiate its mission by moving towards the last known position of the target
robot. This process is repeated until the rescuer robot is close enough to the target robot.
Figure 68 illustrates an example scenario.

Figure 68 - Snapshot of the ART-WiSe Search&Rescue Testbed Application

On the top right corner of Figure 68 it is showed the Control Station software
Graphical User Interface (GUI). In that software it is presented a virtual representation of
the testbed scenario as well as a video stream from the Rescuer camera and other
information regarding the Rescuer status.

Chapter 8 – Hands-on Work over a Real Application Scenario

113

Figure 69 - The Search&Rescue Testbed in action

Figure 69 shows a picture from the ART-WiSe Search and Rescue testbed in action.

8.3 Overview of the testbed localization mechanism
The developed localization mechanism is based in RSS (Radio Signal Strength) readings
from the CC2420 transceiver [28] used by the WSN nodes (MICAz). The target robot
detection mechanism and the subsequent mission dispatching to the rescuer robot are
illustrated in Figure 70 in the timing diagram of Figure 71.

Figure 70 - The localization mechanism

The target robot initiates the process by announcing its presence by sending a
distress (“help”) broadcast message (2a) at a pre-programmed transmission power and
timing rate. Every WSN node that receives that distress message stores the received
RSSI and builds a “Distress Alert message” containing that value and its coordinates and
sends it to the control station (2b). The Control Station is expected to receive multiple
“Distress Alert messages” from different nodes. As soon as a sufficient number of
messages is received (e.g. 7 messages) the target robot’s position is computed based on
the same algorithm used for the rescuer robot positioning.

Message
WSN node
Triggered
Node

Control
Station

Rescuer robot

Target robot

2a

2b

2b

2b

1a

2c

1a

1a

1a

Chapter 8 – Hands-on Work over a Real Application Scenario

114

Broadcast Message

Calculate
Target Position

Virtual Display

Process New
Mission / Mission

Update

Multiple detection messages

Status message

Status message

New Mission / Mission Update

Rescuer
Robot

Control
Station

WSN Nodes
Target
Robot

IEEE 802.15.4

IEEE 802.15.4

IEEE 802.11

IEEE 802.11

IEEE 802.11

(2a)

(2b)

(2c)

Figure 71 - Timing diagram of the localization mech anism

The localization mechanism presented a maximum error of approximately 70 cm. We

did not expect better results for the localization mechanism since there are many sources
of RSSI variability like transmitter/receiver variability, antenna orientation and multi-
path fading and shadowing. All these reasons may cause errors in the RSSI
measurements, eventually leading to the computation of a wrong position. The
localization mechanism is presented in more detail in [87].

8.4 Assessing the hidden-node impact in the application

8.4.1 Changes to the testbed
In order to assess the impact of the presence of hidden-nodes in the behaviour of the
testbed, a hidden-node zone (HNZ) was created inside the WSN deployment. Within this
area, some nodes were programmed as hidden-terminals, by changing the CCA (Clear
Channel Assessment) Threshold value of the node’s transceiver to a maximum value, so
that they would not be able to sense the wireless channel as busy.

The Rescuer robot was not used in the experiments since we focused more on
assessing the hidden-terminal impact in the tracking capabilities of the application, rather
than in performing communication to a higher tier (IEEE 802.11 for communicating
with the Rescuer robot).

8.4.2 Impact in the localization mechanism
In order to measure the impact in the application, namely in the localization and target
tracking mechanism, we carried out two different sets of experiments. Those were to
measure the necessary time to get a precise localization of the Target Robot when inside
the HNZ as compared to the normal behaviour (without hidden-nodes).

Chapter 8 – Hands-on Work over a Real Application Scenario

115

In the first one, we set the WSN nodes that were triggered in the localization
mechanism (the anchor nodes) as hidden and measured the delay to get a localization
output. On the second set of experiments we used only one hidden node placed inside the
HNZ generating traffic at preset rates. This node could not sense the four anchor nodes
necessary for localization. However, this time the anchor nodes were able to sense each
other and the extra traffic generating node, thus resulting in a unidirectional link between
those and the hidden-node. Ten measurements were performed for each traffic value.

In both tests, one set of experiments was done using the H-NAMe [14] mechanism,
described in Chapter 5, to demonstrate the feasibility and effectiveness of the mechanism
in a real application scenario.

Test 1
For Test 1, we used only one hidden anchor node, then two, three and finally all the four
anchor nodes as hidden-nodes, leaving in the last case, no link between them. Figure 72
presents the time necessary to get the localization of the target for each case.

Figure 72 - Delay in Localization for Test 1

With all the four anchor nodes programmed as hidden nodes, the delay to get a
correct location output was higher than 30 seconds. On the other hand, without any
hidden-node the time necessary to get the position of the target is less than 1 second
(approximately 400ms).

We noticed that with only one hidden-node of the four anchor nodes in the HNZ,
there was little impact on the delay. This was due to the fact there were always three
anchor nodes with full connectivity and distance information available (the minimum to
run the localization algorithm). In fact, when we disconnected one of those three anchor
nodes, the delay value increased to 5 seconds, since there were only two nodes with full
connectivity available for performing localization.

With the H-NAMe mechanism, we assigned one group to each hidden-node. The
performance improvement was immediately noticed, since it allowed localization in
approximately one second, even when all of the four anchors used for localization were
hidden.

Could not get a position result

Chapter 8 – Hands-on Work over a Real Application Scenario

116

Test 2
A hidden-node was programmed to generate traffic with pre-programmed inter-arrival
times. It was then placed inside the HNZ. The target was also placed inside the HNZ and
the localization mechanism was enabled. Several sets of experiments were made for
different traffic generation rates (ten for each inter-arrival time). This test is different
from the previous in the sense that now there is a unidirectional link between the anchor
nodes and the hidden-node (the anchor nodes can sense the hidden-node but the hidden-
node cannot sense the anchors). Interference was not expected to be very high since the
anchor nodes could use the IEEE 802.15.4 Slotted CSMA-CA for performing collision
avoidance, thus escaping collisions with the hidden-node. Nevertheless, some delay was
still observed as showed in Figure 73.

Figure 73 - Delay in localization for test 2

For low inter-arrival times (around 1 second), there is little impact on the delay since
the probability of collisions is not very high. Nevertheless, for an inter-arrival rate of one
second, there were still collisions, leading to a delay around four seconds. However, as
the inter-arrival time tends to decrease (lower than 100 ms), the impact is highly
noticeable, taking approximately 20 seconds to get the position of the target. This
obviously renders the localization mechanism useless and the tracking application fails,
since it takes too much time to output a target position. On the other hand, when H-
NAMe is used, the delay remains approximately the same (around 1 second), as it is
completely independent from the hidden-node traffic rate.

This test was repeated with the target robot in motion (remote controlled) at a
constant speed. As expected, we observed that for inter-arrival values lower than 800
milliseconds in the traffic generating node, as the robot was going through the HNZ, the
Control Station failed to present its current position. As the robot left that zone, the
Control Station was able to correctly inform the position of the target once again. When
using H-NAMe, the localization output from the localization mechanism was constant,
both inside and outside the HNZ zone.

Chapter 8 – Hands-on Work over a Real Application Scenario

117

8.5 Problems and challenges related to the experimental
work
When dealing with actual implementation work, one is probable to face challenges
related to the technological limitations of the platforms under use. This is particularly
true when using recent technology like the one available for WSNs.

In the course of our research work, several experimental scenarios were built for
testing and validating our theoretical proposals. Some examples include the network
performance evaluation testbeds described in Chapter 4 and 5 and the one used for the
worst-case dimensioning of Cluster-Tree ZigBee networks presented in Chapter 6. All of
these presented some challenges that had to be mitigated to enable the envisaged
experimental validation.

During this particular implementation and experimental efforts, some of those
difficulties were re-encountered, namely in what concerns the behaviour of the hardware
platforms – the MICAz and TelosB motes. In this section, we summarize some relevant
problems we faced during this implementation effort and others, already described in
previous chapters, and how they have been tackled.

8.5.1 Hardware platforms and debugging
The MICAz mote requires the use of a hardware board as a programming interface (the
MIB510), while the TelosB mote features an USB interface, enabling the programming
via the PC. Both motes provide a debug mechanism by sending data through the serial
(COM/USB) port and reading it in a communication listener (e.g. ListenRaw, provided
with the TinyOS distribution, or Windows HyperTerminal). This debugging mechanism
raises a problem concerning the hardware operation, since the transmission through the
COM port blocks all the other mote operations. This usually causes synchronization
problems.

In order to overcome these local debugging issues and to have a total control over the
network behaviour and of all transmitted packets, we have been using two different
network/protocol analysers [37] and [38] already described in detail in Chapter 3.

8.5.2 Memory constraints
The mote platforms we have used in the IEEE802.15.4/ZigBee implementation –
MICAz and TelosbB – are very limited in terms of random access memory (RAM) –
roughly 4 kB for the former and 10 kB for the latter. The RAM must be sufficient to
fulfil the requirements of the TinyOS operating system, of the protocol stack and of the
high level application. In this aspect, the MICAz motes are more constrained than the
TelosB. Take the example of two TinyOS 2.0 demo applications in order to demonstrate
the variation in RAM memory usage – the Blink and MultihopOscilloscopeApp
applications, compiled for both platforms. The first uses approximately 55 bytes and the
second 3348 bytes of RAM. Besides the RAM memory allocated at compilation time,
the devices need to have enough free memory for the operating system stack. In our
TinyOS 2.0 implementation, the memory needed by an application that only uses the
IEEE 802.15.4 beacon-enabled modes needs approximately 2678 bytes of RAM while
an application using the ZigBee network layer with the cluster-tree topology needs
approximately 3224 bytes. Note that it is assumed that the high level applications are

Chapter 8 – Hands-on Work over a Real Application Scenario

118

very simple and just used for testing purposes and the different buffers used are very
small.

8.5.3 CC2420 transceiver limitations
Another hardware limitation concerns the radio performance of the CC2420 transceiver,
used by the MICAz and TelosB motes. According to the IEEE 802.15.4 Physical Layer
specification, the transceiver must have a turnaround time, i.e. the time that the CC2420
radio transceiver takes to switch from receive mode to transmit mode and vice-versa, of
12 symbols (192 µs). This is the maximum time bound required to acknowledge
messages. In fact, the CC2420 has the hardware configuration of auto-acknowledge
messages but, besides generating several false acknowledgments (messages that are
acknowledge but not received by the protocol stack) it needs to have the address decode
functionalities activated. Unfortunately, similarly to several IEEE 802.15.4 compliant
transceivers, it is not possible to achieve the specified turnaround time.

For instance, the Chipcon CC2420 can take up to 192 µs just to switch between these
two modes, leaving no time for data transitions between the MAC sub-layer, the PHY
layer and the chip transmit memory space.

In addition, the processing power available in the motes microcontroller revealed to
be quite limited to comply with the most demanding IEEE 802.14.5 timing constrains,
especially for small Beacon orders (BO < 3) and Superframe orders (SO < 3). This turns
these Superframe configurations impossible to deploy, considering that the motes must
also have availability for processing other tasks. It is reasonable to assume that the
processing limitations can be easily overcome in the near future with the development of
new and faster microcontrollers or by a hardware implementation of the protocol stack.

8.5.4 Timing and synchronization requirements
The timing requirements of the IEEE 802.15.4 protocol are very demanding. In the
beacon-enabled mode, all devices (ZRs and ZEDs) must synchronize with their parents
(ZR or ZC) through beacon frame signalling. If a device loses synchronization it cannot
operate in the PAN. Moreover, if a node is not properly synchronized, there is a
possibility of collisions in the GTS slots (when the CAP overlaps the CFP). As
experienced in our implementation, the loss of synchronization can be caused by
multiple factors, such as: (1) the processing time of the beacon frame for low BO/SO
configurations; (2) the mote stack overflow that results in a processing block or a hard
reset; (3) the unpredictable delay of the wireless communications; and (4) the reduced
processing capability of the microcontroller in conducting some of the protocol
maintenance tasks (e.g. creating the beacon frame, the maintenance of GTS expiration
and indirect transmissions).

The implementation of the slotted CSMA/CA algorithms is also quite demanding in
terms of timer accuracy, since the IEEE 802.15.4 protocol defines that each backoff
period corresponds to 20 symbols (320 µs). A first difficulty in the implementation of
the beacon-enabled mode was related to the TinyOS management of the hardware timers
provided by the motes, which do not allow having the exact theoretical values of the BI,
SD, time slot and backoff period durations as specified by the IEEE 802.15.4 standard.
This discrepancy, however, does not impact the correct behaviour of the implemented
protocol; provided that the same mote platforms are used in the experiments (at least as
ZC and ZRs), it is possible to experience a coherent network behaviour.

Chapter 8 – Hands-on Work over a Real Application Scenario

119

Figure 74 - Asynchronous events

The frequency of the asynchronous software events (Figure 74), the hardware events
and the low microprocessor processing ability may lead to an insufficient processing
time left to execute remaining protocol and higher level application tasks, as a great
amount of interrupts have to be processed in short periods of time.

8.5.5 TinyOS task scheduler
This was already discussed in greater detail in Chapter 7. The default scheduler of
TinyOS does not support tasks prioritization and, furthermore, the TinyOS scheduler is
non pre-emptive. Although, with the aforementioned problem, the protocol stack
behaves steadily for beacon and superframe orders higher than 3, this constitutes a
problem for other BO/SO settings.

8.5.6 Interference between radio channels
To ensure the reliability of the measurement process, some issues had to be considered,
namely guaranteeing that the IEEE 802.15.4 physical channel was free from interference
from IEEE 802.11 networks, which operate at the same frequency range. We have
experimentally observed that despite the distance to the nearest IEEE 802.11 access
point being over 10 m, it definitely impact on the performance measurements. The
channel was often sensed as busy (during the Clear Channel Assessment (CCA)
procedure) due to IEEE 802.11 transmissions. Hence, we chose an IEEE 802.15.4
channel outside the IEEE 802.11 frequency spectrum (Channel 26) to perform the
experimental evaluation. Channel integrity was ensured using a spectrum analyzer. In
addition, another aspect that was considered was the choice of the SO value to be used in
our experiments.

In order to experimentally analyse the behaviour of the protocols, we devised
scenarios that enabled us to evaluate different network metrics, such as the Network
Throughput and Probability of Success as a function of the network load, as reported in
Chapter 4, 5 and 6. Other scenarios, like the one described in this chapter, had the goal
of demonstrating impact of some parameter in a real application. In general lines, these
scenarios consisted of one or several nodes programmed to generate packets at the
application layer with preset inter-arrival times, enabling us to push the necessary traffic
load into the network. We used the previously referred IEEE 802.15.4 protocol analyzer
to log the received packets and developed an application to parse the message payload,
which embedded relevant performance information retrieved from the nodes in order to
compute the required metrics.

Chapter 8 – Hands-on Work over a Real Application Scenario

Obviously, it is important to isolate as much as possible the testbed scenario from
external factor that may impact in the

One requirement of the performance evaluation was to achieve high traffic loads in
the network, namely pushing well above 100
observed that it was not only difficult to get a consistent behaviour of the Throughput
metric but also to get high offered loads. Moreover, it was hard to ensure the stability of
the network when the nodes were ge

After performing several assessments, we reached the conclusion that this behaviour
was mostly related to three factors: (1) the interference from the Wi
the laboratory (see Figure
the node’s scarce processing capability.

The interference between IEEE 802.11 and 802.15.4 radio channels, c
a spectrum analyser, had unpredictable effects on the results. We observed that the
interference of IEEE 802.11 networks often generated collisions with data/beacon
frames. This effect, lead to data corruption and network de
also had implications on the amount of traffic sent to the network because in the IEEE
802.15.4 slotted CSMA/CA protocol, the medium was often sensed as busy (during the
Clear Channel Assessment (CCA)), causing deference and failed transmissi
obviously affected the behaviour of the network since it did not allow reaching the
desired traffic loads. We overcame the interference problem by using the only IEEE
802.15.4 channel (Channel 26 in the 2480 MHz frequency band) that is completely
outside the IEEE 802.11 frequency spectrum

Figure

Note that this interference must be taken into consideration for the reliable
deployment of ZigBee networks operating in the 2.4 GHz frequency. Nevertheless,
besides the interference problem, we have also identified other sources of
inconsistencies.

on Work over a Real Application Scenario

120

Obviously, it is important to isolate as much as possible the testbed scenario from
external factor that may impact in the

One requirement of the performance evaluation was to achieve high traffic loads in
the network, namely pushing well above 100% of the network capacity. We immediately
observed that it was not only difficult to get a consistent behaviour of the Throughput
metric but also to get high offered loads. Moreover, it was hard to ensure the stability of
the network when the nodes were generating packets with very low inter-arrival times.

After performing several assessments, we reached the conclusion that this behaviour
was mostly related to three factors: (1) the interference from the Wi-Fi networks around

Figure 76); (2) TinyOS-related constrains; and (3) others related to
the node’s scarce processing capability.

The interference between IEEE 802.11 and 802.15.4 radio channels, confirmed using
a spectrum analyser, had unpredictable effects on the results. We observed that the
interference of IEEE 802.11 networks often generated collisions with data/beacon
frames. This effect, lead to data corruption and network de-synchronization. Moreover, it
also had implications on the amount of traffic sent to the network because in the IEEE
802.15.4 slotted CSMA/CA protocol, the medium was often sensed as busy (during the
Clear Channel Assessment (CCA)), causing deference and failed transmissi
obviously affected the behaviour of the network since it did not allow reaching the
desired traffic loads. We overcame the interference problem by using the only IEEE
802.15.4 channel (Channel 26 in the 2480 MHz frequency band) that is completely
outside the IEEE 802.11 frequency spectrum as depicted in Figure 75.

Figure 75 - IEEE802.15.4 and IEEE 802.11 channels

interference must be taken into consideration for the reliable
deployment of ZigBee networks operating in the 2.4 GHz frequency. Nevertheless,
besides the interference problem, we have also identified other sources of

Obviously, it is important to isolate as much as possible the testbed scenario from

One requirement of the performance evaluation was to achieve high traffic loads in
% of the network capacity. We immediately

observed that it was not only difficult to get a consistent behaviour of the Throughput
metric but also to get high offered loads. Moreover, it was hard to ensure the stability of

arrival times.
After performing several assessments, we reached the conclusion that this behaviour

Fi networks around
related constrains; and (3) others related to

onfirmed using
a spectrum analyser, had unpredictable effects on the results. We observed that the
interference of IEEE 802.11 networks often generated collisions with data/beacon

Moreover, it
also had implications on the amount of traffic sent to the network because in the IEEE
802.15.4 slotted CSMA/CA protocol, the medium was often sensed as busy (during the
Clear Channel Assessment (CCA)), causing deference and failed transmissions. This
obviously affected the behaviour of the network since it did not allow reaching the
desired traffic loads. We overcame the interference problem by using the only IEEE
802.15.4 channel (Channel 26 in the 2480 MHz frequency band) that is completely

interference must be taken into consideration for the reliable
deployment of ZigBee networks operating in the 2.4 GHz frequency. Nevertheless,
besides the interference problem, we have also identified other sources of

Chapter 8 – Hands-on Work over a Real Application Scenario

121

Figure 76 - WiFi networks around the Hands-on lab

As already discussed in Section 3, TinyOS imposes several limitation that influence
the behaviour of the protocol stack, namely on the synchronization. We have observed
that when nodes used a very low inter-arrival time (in the order of 50 packets per
second) the de-synchronization was a concern, mainly due to the high amount of tasks
posted to generate the required offered load. To mitigate this problem, we programmed
the nodes to generate packets only during the active portion of the Superframe, trying to
guarantee that the beacon frame would be parsed immediately upon the reception.
Nevertheless, when using a full duty cycle the problem remained. We have solved it by
using a new timer that fires a few milliseconds before the end of the Superframe,
stopping all the packet generation and leaving the nodes ready to process the beacon.

8.5.7 RSSI-based localization inaccuracy
In the Search&Rescue application described in this chapter, a rescuer robot is supposed
to track and reach, in the minimum amount of time, a steady or moving target (person or
robot), using a wireless sensor network for tracking and localization. In this context we
wanted to develop a simple but effective localization mechanism, relying as much as
possible on COTS technologies and taking advantage of the RSSI indicator available
directly from the CC2420 transceiver, using the RSSI values as the source for distance
estimation.

We immediately observed that these measurements were highly sensitive to ambient
conditions. The proximity to metal and walls highly increased the number of reflections
leading to non-consistent RSSI readings. Moreover, the RSSI value was not linear with
the distance (Figure 77) and it varied with different mote antenna orientations. This
means that it was probable to find several different RSSI readings at the same distance.
To overcome that problem, several experiments were carried out at different distances,
transmission powers and antenna orientations in an attempt to get a consistent set of
values for different distances ([87], [88]).

After these experiments, it became possible to establish a correspondence between
discrete range levels and the spread of RSSI values encountered for that same range.

Chapter 8 – Hands-on Work over a Real Application Scenario

122

Figure 77 - RSSI versus Distance [88]

This enabled us to engineer a simple RSSI-based localization mechanism with
approximately 60 cm inaccuracy, which was acceptable for the envisaged application.

8.6 Concluding Remarks
In this chapter we presented a deployment of a WSN in a real scenario (a target tracking
application), aiming at demonstrating the impact of the hidden-node problem and to
prove the effectiveness of the H-NAMe mechanism.

We showed that this issue greatly affects an application of this kind, by increasing
the message delays (through multiple collisions), thus reducing the effectiveness of the
localization mechanism in the proximity of hidden-nodes. In fact, from our tests, we
showed that having two out of four anchor nodes (used in the localization mechanism)
hidden, is enough to cause a significant degradation of the target localization process,
taking up to five seconds to get a result.

We also evaluated the impact of having only one hidden-node placed inside the
network generating traffic at different rates. We proved that one node, with a medium
traffic generation rate (800 milliseconds), would cause problems to the localization
process.

We also reported several problems and challenges emerging from our experimental
work on the IEEE 802.15.4/ZigBee protocol stack. The hardware platforms under use –
MICAz and TelosB – seem to be too limited for the demanding requirements of ZigBee
cluster-tree networks, where synchronization depends on the distributed transmission of
beacon frames. This also results from the limitations of TinyOS to tackle this demanding
protocol behaviour. Thus, the motivation to port the Open-ZB stack to ERIKA, a real-
time operating system, already described in Chapter 7.

Chapter 9
General Conclusions and Future Work

This chapter reviews the research objectives of this Thesis and
summarises its major results, highlighting how the research
contributions fulfilled the original research objectives. Finally, some
remarks about our future work are also presented.

The ubiquity and pervasiveness of future large-scale distributed systems will lead to a
very tight integration and interaction between embedded computing devices and the
physical environment, via sensing and actuating actions. Such cyber-physical systems
require a rethinking in the usual computing and networking concepts, and given that the
computing entities closely interact with their environment, timeliness is of increasing
importance.

We believe that relying on standard and commercial off-the-shelf (COTS)
technologies will speed up the development of real applications in these domains, since
this choice usually has a significant impact in reducing development and maintenance
costs, increasing interoperability, thus speeding up the utilization of these technologies
by developers and end-users.

This Thesis addressed the use of standard protocols combined with COTS
technologies, as a baseline to enable Wireless Sensor Network (WSN) infrastructures
capable of supporting the QoS requirements (e.g. timeliness, energy-efficiency) that
future large-scale embedded computing systems will impose.

In this context, we have been using the use of the IEEE 802.15.4 and ZigBee
communication protocols for WSNs. ZigBee supports several network topologies (star,
mesh and cluster-tree), security mechanisms and application profiles. IEEE 802.15.4
allows dynamically adjustable duty-cycles per cluster, enabling energy-efficiency (nodes
can sleep up to almost 100% of the time). The Medium Access Control (MAC) protocol
is very flexible, enabling the differentiation between real-time traffic (contention-free;
bandwidth/delay guarantees) through the GTS (Guaranteed Time Slot) mechanism, and
best-effort traffic (contention-access) through the Slotted CSMA/CA (Carrier Sense

Chapter 9 – General Conclusions and Future Work

124

Multiple Access with Collision Avoidance) mechanism. There has been an exponential
growth in available ZigBee technology, although the cluster-tree network solution is not
commercially supported.

In this Thesis, we started by evaluating the network performance of the IEEE
802.15.4 Slotted CSMA/CA mechanism for different parameter settings, both through
simulation and experimentally (Chapter 4). We studied the impact of parameters like
Beacon Order (BO), or the initialization value of the Backoff Exponent macMinBE in the
Network Throughput and Probability of Successful transmissions, which allowed us to
gain a better understanding of the performance of the Slotted CSMA/CA mechanism.

Because the hidden-node problem has such a great impact in WSN performance, both
in terms of throughput, transfer delay and energy-efficiency, we have implemented,
tested and validated H-NAMe, a hidden-node avoidance mechanism that was previously
proposed. This work was addressed in Chapter 5 and its effectiveness was demonstrated
in a real application scenario - a target tracking application - as presented in Chapter 8.

In Chapter 6, a methodology for modelling cluster-tree WSNs and computing the
worst case end-to-end delays, buffering and bandwidth requirements was tested and
validated experimentally. This work was of paramount importance to understand the
behaviour of WSNs under worst-case conditions and to determine the pessimism of the
theoretical worst-case analysis.

In our experimental work, some technological constraints were identified, namely
related to hardware/software and to the Open-ZB implementation over TinyOS. This
issue was addressed in Chapter 8, and a new implementation effort was made in porting
the Open-ZB IEEE 802.15.4/ZigBee protocol stack to ERIKA, a real-time operating
system, as described in Chapter 7. This new implementation presented some interesting
performance behaviour when compared with the TinyOS–based implementation.

In summary, we confirmed the initial hypothesis of this Thesis, i.e., the use of IEEE
802.15.4 and ZigBee set of standard protocols as a baseline, combined with commercial
hardware/software platforms and some add-ons seem to be able to fulfil improve the
timeliness and energy-efficiency requirements that WSNs may impose.

Future work includes the provision of mobility and fault-tolerance support to ZigBee
WSNs. Regarding the IEEE 802.15.4/ZigBee Open-ZB stack we aim at continuing the
effort of porting the implementation to the ERIKA real-time operating system, and
eventually to other operating systems (e.g. nano-RK) and hardware platforms (e.g.
iMote2).

References
[1] J. Stankovic, I. Lee, A. Mok, R. Rajkumar, “Opportunities and Obligations for

Physical Computing Systems”, in IEEE Computer, Volume 38, Nov, 2005.
[2] The Economist, “When everything connects”, April 28th – May 4th, 2007.
[3] N. Aakvaag, M. Mathiesen, and G. Thonet, “Timing and power issues in

wireless sensor networks, an industrial test case”, In Proceedings of the 2005
International Conference on Parallel Processing Workshops (ICPPW). IEEE,
2005.

[4] N. Ota and P. Wright, “Trends in wireless sensor networks for
manufacturing”, International Journal of Manufacturing Research, 1(1):3–17,
2006.

[5] X. Shen and Y. Sun. “Wireless sensor networks for industrial control”, In
Proceedings of the 5th IEEE World Congress on Intelligent Control and
Automation, Hangzhou, P.R. China, June 2004. IEEE.

[6] IEEE 802.15 WPAN™ Task Group 4 (TG4),
http://grouper.ieee.org/groups/802/15/pub/TG4.html

[7] ZigBee Alliance (2006), ZigBee Specification 2006, http://www.zigbee.org/
[8] J. Zheng and J. L. Myung, “Will IEEE 802.15.4 Make Ubiquitous Networking

a Reality? A Discussion on a Potential Low Power, Low Bit Rate Standard”,
IEEE Communications Magazine, vol. 42, No. 6, pp. 140- 146, , 2004.

[9] D. Geer, “Users Make a Beeline for ZigBee Technology”, IEEE Computer
Society Press, vol. 38, Issue 12, pp. 16-19, Dec., 2005.

[10] A. Koubâa, M. Alves, E. Tovar, “A Two-Tiered Architecture for Real-Time
Communications in Large-Scale Wireless Sensor Networks.”, WIP Session on
the 17th Euromicro Conference on Real-Time Systems (ECRTS’05), Palma
de Mallorca, Spain, 2007.

[11] The ART-WiSe Framework, www.hurray.isep.ipp.pt/art-wise/, 2008
[12] M. Alves, A. Koubaa, A. Cunha, R. Severino, E. Lomba, “On the

Development of a Test-Bed Application for the ART-WiSe Architecture”, In
Euromicro Conference on Real-Time Systems (ECRTS 2006), (WiP Session),
July 2006.

[13] R. Severino, A. Koubâa, “On the Performance Evaluation of the IEEE
802.15.4 Slotted CSMA/CA Mechanism”, IPP-HURRAY Technical Report,
HURRAY-TR-080930, September, 2008.

[14] A. Koubaa, R. Severino, M. Alves, E. Tovar, “H-NAMe: Specifying,
Implementing and Testing a Hidden-Node Avoidance Mechanism for
Wireless Sensor Networks”, IPP-HURRAY Technical Report, HURRAY-
TR-071113, April 2008.

[15] P. Jurčík, R. Severino, A. Koubâa, M. Alves, E. Tovar, “Real-Time
Communications over Cluster-Tree Sensor Networks with Mobile Sink
Behaviour”, published at the 14th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA
2008), Kaohsiung, Taiwan.

[16] P. Jurčík, R. Severino, A. Koubâa, M. Alves, E. Tovar, “Real-Time
Communications over Cluster-Tree Sensor Networks with Mobile Sink

126

Behaviour”, IPP-HURRAY Technical Report, HURRAY-TR-081002,
October 2008. Submitted to a Journal.

[17] P. Pagano, M. Chitnis, R. Severino, M. Alves, A. Romano, G. Lipari, P.
Sousa, E. Tovar, “ERIKA and Open-ZB: a tool suite for real-time wireless
networked applications”, IPP-HURRAY Technical Report, HURRAY-TR-
081003, October 2008. Submitted to an international conference.

[18] A. Cunha, A. Koubâa, R. Severino, M. Alves, “Open-ZB: an open-source
implementation of the IEEE 802.15.4/ZigBee protocol stack on TinyOS”, in
Proc. of the 4th IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (MASS´07), Pisa, Italy, October 2007.

[19] Open-ZB open-source toolset for the IEEE 802.15.4/ZigBee protocols
website. http://www.open-zb.net

[20] TinyOS Network Protocol Working Group,
http://tinyos.stanford.edu:8000/Net2WG

[21] A. Cunha, R. Severino, N. Pereira, A. Koubâa, M. Alves, “ZigBee over
TinyOS: implementation and experimental challenges”, In the 8th Portuguese
Conference on Automatic Control (CONTROLO’2008), Invited Session on
"Real-Time Communications: from theory to applications", July, 2008.

[22] IETF, RFC 3561 Ad hoc On-Demand Distance Vector (AODV) Routing,
2003

[23] E. Callaway, “MAC Proposal for the Low Rate 802.15.4 Standard”,
MOTOROLA, 2001.

[24] IEEE-TG15.4, "Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR- WPANs)," IEEE standard for Information Technology, 2003.

[25] Crossbow, “MICAz Datasheet”, www.xbow.com, 2007
[26] Crossbow, “TelosB Datasheet”, www.xbow.com, 2007
[27] ATmega128L 8-bit AVR Microcontroller Datasheet, Atmel ref: 2467MAVR-

11/04, http://www.atmel.com
[28] Chipcon, “CC2420 transceiver datasheet”, 2004.
[29] Texas Instruments, “MSP430x21x1 Microcontroler Datasheet”,

http://focus.ti.com/docs/prod/folders/print/msp430f149.html, 2004
[30] Evidence, “FLEX Embedded Platform Reference Manual”,

www.evidence.eu.com, 2008
[31] Microchip, “dsPIC33F Family Data Sheet”, www.microchip.com, 2008
[32] Flexipanel, 2.4GHz ZigBee ready IEEE 802.15.4 RF transceiver,

www.flexipanel.com, 2008
[33] CrossBow, MIB510 Datasheet, www.xbow.com, 2008
[34] CrossBow, MIB520 Datasheet, www.xbow.com, 2008
[35] CrossBow, MIB600 Datasheet, www.xbow.com
[36] Microchip, MPLAB ICD2, www.microchip.com, 2008
[37] Chipcon, Texas Instruments Incorporated, “Chipcon Packet Sniffer for IEEE

802.15.4”, www.chipcon.com, 2006
[38] Daintree Networks, "Sensor Network Analyser," www.daintree.net, 2006.
[39] Chipcon, Texas Instruments Incorporated, “SmartRF Studion User Manual

6.5”, 2006, http://www.chipcon.com.

127

[40] Daintree Networks, “2400E Sensor Network Adapter Datasheet”,
www.daintree,net, 2006

[41] Crossbow, “Avoiding RF interference between WiFi and ZigBee”, 2008
[42] OPNET Technologies, Inc., Opnet Modeler Wireless Suite - ver. 11.5A,

http://www.opnet.com
[43] TinyOS, www.tinyos.net, 2007
[44] ERIKA Real-time operating system, http://erika.sssup.it/, 2008
[45] A. Eswaran, A. Rowe and R. Rajkumar. “Nano-rk: An energy-aware resource-

centric operating system for sensor networks”. In Proceedings of IEEE Real-
Time Systems Symposium, 2005.

[46] A. Dunkels, B. Grnvall, and T. Voigt. “Contiki - a lightweight and flexible
operating system for tiny networked sensors”. In Proceedings of the First
IEEE Workshop on Embedded Networked Sensors (Emnets-I), Tampa,
Florida, USA, Nov. 2004.

[47] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, D. Culler, “The nesC
language: A Holistic Approach to Networked Embedded Systems”, in
Proceedings of the Programming Language Design and Implementation,
2003.

[48] Eclipse – An open development platform, www.eclipse.org, 2008
[49] T. O. group. OSEK/VDX. http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
[50] Ember, www.ember.com, 2007
[51] Ember, “EM250 Single-Chip ZigBee/802.15.4 Solution”, Datasheet

http://www.ember.com/products_zigbee_chips_e250.html, 2006
[52] Ember, “EM260 ZigBee/802.15.4 Network Processor”, Datasheet

http://www.ember.com/products_zigbee_chips_e260.html, 2006
[53] Freescale semiconductor, www.freescale.com, 2007
[54] Freescale, “MC13192 2.4 GHz Low Power Transceiver for the IEEE®

802.15.4 Standard”, Technical Datasheet, www.freescale.com, 2007
[55] Freescale, “MC13201 2.4 GHz Low Power Transceiver for the IEEE®

802.15.4 Standard”, Technical Datasheet, www.freescale.com, 2007
[56] Integration, “IA OEM-DAUB1 2400 - IEEE 802.15.4/ZigBee USB Dongle”,

www.integration.com, 2006
[57] Integration Associates, www.integration.com, 2007
[58] Texas Instruments, “Z-Stack”,

http://focus.ti.com/docs/toolsw/folders/print/z-tack.html, 2007
[59] Texas Instruments, “CC2431 System-on-Chip for 2.4 GHz ZigBee/ IEEE

802.15.4 with Location Engine”, Datasheet,
http://focus.ti.com/docs/prod/folders/print/cc2431.html, 2007

[60] Atmel, ”Z-link”, http://www.atmel.com/products/AVR/z-link/Default.asp,
2007

[61] ZigBee Alliance, Compliant Platforms,
http://www.zigbee.org/en/certification/compliant_platforms.asp

[62] A. Cunha, M. Alves, A. Koubaa. “An IEEE 802.15.4 protocol implementation
(in nesC/TinyOS): Reference Guide v1.2”, IPP-HURRAY Technical Report,
HURRAY-TR-061106, Nov 2006.

128

[63] A. Koubaa, M. Alves, E. Tovar, “A Comprehensive Simulation Study of
Slotted CSMA/CA for IEEE 802.15.4 Wireless Sensor Networks”, In IEEE
WFCS 2006, Torino (Italy), June 2006.

[64] L. Kleinrock, F. A. Toubagi, "Packet Switching in Radio Channels: Part I –
Carrier Sense Multiple Access Modes and Their Throughput-Delay
Characteristics", IEEE Trans. on Communications, Vol. Com-23, N. 12,
Dec.1975.

[65] Petr Jurcík, Anis Koubâa, The IEEE 802.15.4 OPNET Simulation Model:
Reference Guide v2.0”, www.open-zb.net, IPP-HURRAY Technical Report,
HURRAY-TR-070509, May 2007

[66] A. Cunha, “On the use of IEEE 802.15.4/ZigBee as federating communication
protocols for Wireless Sensor Networks”, HURRAY-TR-070902, MSc
Thesis, 2007.

[67] F. A. Tobagi and L. Kleinrock, “Packet Switching in Radio Channels: Part II -
The Hidden Terminal Problem in Carrier Sense Multiple-Access and the
Busy-Tone Solution,” IEEE Transactions on Communication, vol. 23, pp.
1417-1433, 1975.

[68] C.S. Wu and V. O. K. Li, “Receiver-initiated busy-tone multiple access in
packet radio networks," in Proceedings of the ACM workshop on Frontiers in
computer communications technology, Stowe, Vermont, United States, 1987.

[69] Z. J. Haas and J. Deng, “Dual busy tone multiple access (DBTMA)--A
multiple access control scheme for ad hoc networks,” IEEE Transactions on
Communications, vol. 50, pp. 975 - 985, 2002.

[70] F.A. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part III –
polling and (dynamic) split channel reservation multiple access”, IEEE
Transactions on Computers 24(7), pp. 832–845, August 1976.

[71] P. Karn, "MACA - A New Channel Access Method for Packet Radio," in
Proceedings of the ARRL/CRRL Amateur Radio 9th Computer Networking
Conference, 1990.

[72] ISO/IEC IEEE-802-11, “Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” IEEE standard for
Information Technology, 1999.

[73] Y. Yang, F. Huang, X. Ge, X. Zhang, X. Gu, M. Guizani, H. Chen, “Double
sense multiple access for wireless ad-hoc networks”, in The International
Journal of Computer and Telecomunications Networking, V. 51, Issue 14,
2007.

[74] J. Deng, B. Liang, and P. K. Varshney, "Tuning the carrier sensing range of
IEEE 802.11 MAC," GLOBECOM - IEEE Global Telecommunications
Conference, vol. 5, pp. 2987-2991, 2004.

[75] S. Xu and T. Saadawi, "Does the IEEE 802.11 MAC protocol work well in
multihop wireless ad hoc networks?," IEEE Communications Magazine, vol.
39, pp. 130-137, 2001.

[76] H. Zhai and Y. Fang, "Physical carrier sensing and spatial reuse in multirate
and multihop wireless ad hoc networks," Proc. IEEE INFOCOM, April 2006.

[77] L. Hwang, "Grouping Strategy for Solving Hidden Node Problem in IEEE
802.15.4 LR-WPAN," in 1st International Conference on Wireless Internet
(WICON'05). Budapest (Hungary): IEEE, 2005.

129

[78] A. Koubaa, A. Cunha, M. Alves, “A Time Division Beacon Scheduling
Mechanism for IEEE 802.15.4/ZigBee Cluster-Tree Wireless Sensor
Networks”, in Euromicro Conference on Real-Time Systems (ECRTS 2007),
Pisa (Italy), July 2007.

[79] A. Koubâa, M. Alves, and E. Tovar, “Modeling and Worst-Case
Dimensioning of Cluster-Tree Wireless Sensor Networks”, 27th IEEE Real-
time Systems Symposium (RTSS’06), Rio de Janeiro, Brazil, December 2006,
pp. 412-421, IEEE Computer Society.

[80] Zhihua Hu and Baochun Li, “Fundamental Performance Limits of Wireless
Sensor Networks,” In Ad Hoc and Sensor Networks, Nova Science
Publishers, pp. 81-101, ISBN 1-59454-396-8, Hardcover, 2005.

[81] T. F. Abdelzaher, S. Prabh, R. Kiran, “On real-time capacity limits of
multihop wireless sensor network,” In IEEE Real-Time Systems Symposium
(RTSS’04), Portugal, 2004.

[82] J. Gibson, G. G. Xie, Y. Xiao, “Performance Limits of Fair-Access in Sensor
Networks with Linear and Selected Grid Topologies, “ In GLOBECOM Ad
Hoc and Sensor Networking Symposium, Washington DC, Nov. 2007

[83] S. Prabh, T. F. Abdelzaher, “On Scheduling and Real-Time Capacity of
Hexagonal Wireless Sensor Networks, “In Euromicro Conference on Real-
Time Systems (ECRTS’07), Italy, July 2007.

[84] J-Y. Leboudec, and P. Thiran, “A Theory of Deterministic Queuing Systems
for the Internet,” LNCS, Vol. 2050, May 2004.

[85] A. Koubaa, M. Alves, and E. Tovar, “Modeling and Worst-Case
Dimensioning of Cluster-Tree Wireless Sensor Networks: proofs and
computation details,” Technical Report IPP-HURRAY, TR-060601.

[86] MATLAB Analytical Model, http://www.open-zb.net/downloads.php, 2008
[87] R. Severino, M. Alves, “On a Test-bed Application for the ART-WiSe

Framework”, IPP-HURRAY Technical Report, HURRAY-TR-0601103, Nov
2006.

[88] R. Severino, M. Alves, “Engineering a Search and Rescue Application with a
Wireless Sensor Network-based Localization Mechanism”, Poster Session of
8th IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM07), Helsinki, Finland, June 2007.

Instituto Superior de Engenharia do Porto Rua Dr. António Bernardino de Almeida, 431 4200-072 Porto

Tel. +351 228 340 500 Fax +351 228 321 159 mail@isep.ipp.pt www.isep.ipp.pt

